classification module¶
Classification model¶
The classification
module
implements classification algorithms, whose goal is to find relationships
between input data and output classes.
Classification algorithms provide methods for predicting classes of new input data, as well as predicting the probabilities of belonging to each of the classes wherever possible.
This concept is implemented through the MLClassificationAlgo
class
which inherits from the MLSupervisedAlgo
class.
-
class
gemseo.mlearning.classification.classification.
MLClassificationAlgo
(data, transformer=None, input_names=None, output_names=None, **parameters)[source]¶ Bases:
gemseo.mlearning.core.supervised.MLSupervisedAlgo
Classification Algorithm.
Inheriting classes should implement the
MLSupervisedAlgo._fit()
andMLClassificationAlgo._predict()
methods, andMLClassificationAlgo._predict_proba_soft()
method if possible.Constructor.
- Parameters
data (Dataset) – learning dataset.
transformer (dict(str)) – transformation strategy for data groups. If None, do not scale data. Default: None.
input_names (list(str)) – names of the input variables.
output_names (list(str)) – names of the output variables.
parameters – algorithm parameters.
-
learn
(samples=None)[source]¶ Train machine learning algorithm on learning set, possibly filtered using the given parameters. Determine the number of classes. :param list(int) samples: indices of training samples.
-
predict_proba
(input_data, *args, **kwargs)¶