Source code for gemseo.mlearning.core.unsupervised
# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Syver Doving Agdestein
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""
Unsupervised machine learning algorithm
=======================================
The :mod:`~gemseo.mlearning.core.unsupervised` module implements the concept of
unsupervised machine learning models, where the data has no notion of
input or output.
This concept is implemented through the :class:`.MLUnsupervisedAlgo` class,
which inherits from the :class:`.MLAlgo` class.
"""
from __future__ import absolute_import, division, unicode_literals
from future import standard_library
from numpy import hstack
from gemseo.mlearning.core.ml_algo import MLAlgo
standard_library.install_aliases()
[docs]class MLUnsupervisedAlgo(MLAlgo):
"""Unsupervised machine learning algorithm.
Inheriting classes should overload the
:meth:`!MLUnsupervisedAlgo._fit` method.
"""
ABBR = "MLUnupervisedAlgo"
def __init__(self, data, transformer=None, var_names=None, **parameters):
"""Constructor.
:param Dataset data: learning dataset
:param transformer: transformation strategy for data groups.
If None, do not scale data. Default: None.
:type transformer: dict(str)
:param var_names: names of the variables to consider.
:type var_names: list(str)
:param parameters: algorithm parameters
"""
super(MLUnsupervisedAlgo, self).__init__(
data, transformer=transformer, var_names=var_names, **parameters
)
self.var_names = var_names or data.variables
[docs] def learn(self, samples=None):
"""Train machine learning algorithm on learning set.
:param list(str) names: learning variables. Default: None.
:param list(int) samples: training samples (indices). Default: None.
"""
if set(self.var_names) == set(self.learning_set.variables):
data = []
for group in self.learning_set.groups:
sub_data = self.learning_set.get_data_by_group(group)
if group in self.transformer:
sub_data = self.transformer[group].fit_transform(sub_data)
data.append(sub_data)
data = hstack(data)
else:
data = []
for name in self.var_names:
sub_data = self.learning_set.get_data_by_names([name], False)
if name in self.transformer:
sub_data = self.transformer[name].fit_transform(sub_data)
data.append(sub_data)
data = hstack(data)
if samples is not None:
data = data[samples]
self._fit(data)
self._trained = True
def _fit(self, data):
"""Fit model on data.
:param ndarray data: training data (2D).
"""
raise NotImplementedError