Source code for

# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry,
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# Lesser General Public License for more details.
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

# Contributors:
#    INITIAL AUTHORS - API and implementation and/or documentation
#        :author: Pierre-Jean Barjhoux
A constraints plot
from __future__ import absolute_import, division, unicode_literals

import numpy as np
from future import standard_library
from matplotlib import pyplot
from matplotlib.colors import SymLogNorm

from import PARULA, RG_SEISMIC
from import OptPostProcessor


from gemseo import LOGGER

[docs]class ConstraintsHistory(OptPostProcessor): """ The **ConstraintsHistory** post processing plots the constraints functions history in lines charts with violation indication by color on background. The plot method requires the list of constraint names to plot. It is possible either to save the plot, to show the plot or both. """ def __init__(self, opt_problem): """ Constructor :param opt_problem: the optimization problem to run """ super(ConstraintsHistory, self).__init__(opt_problem) self.cmap = PARULA # "viridis" # "jet" self.ineq_cstr_cmap = RG_SEISMIC # "seismic" "PRGn_r" self.eq_cstr_cmap = "seismic" # "seismic" "PRGn_r" def _plot( self, constraints_list, show=False, save=False, file_path="constraints_history", extension="pdf", ): """ Plots the optimization history: 1 plot for the constraints :param constraints_list: list of constraint names :type constraints_list: list(str) :param show: if True, displays the plot windows :type show: bool :param save: if True, exports plot to pdf :type save: bool :param file_path: the base paths of the files to export :type file_path: str :param variables_list: list of the constraints (func name) :type variables_list: list(str) :param extension: file extension :type extension: str """ # retrieve the constraints values add_dv = False all_constr_names = self.opt_problem.get_constraints_names() for func in list(constraints_list): if func not in all_constr_names: raise ValueError( "Cannot build constraints history plot," + " Function " + func + " is not among constraints names" + " or does not exist." ) vals, vname, _ = self.database.get_history_array( constraints_list, add_dv=add_dv ) # harmonization of tables format because constraints can be vectorial # or scalars. *vals.shape[0] = iteration, *vals.shape[1] = cstr values vals = np.atleast_3d(vals) vals = vals.reshape((vals.shape[0], vals.shape[1] * vals.shape[2])) # prepare the main window nb_iter = vals.shape[0] n_funcs = len(vname) nrows = n_funcs // 2 if 2 * nrows < n_funcs: nrows += 1 fig, axes = pyplot.subplots( nrows=nrows, ncols=2, sharex=True, sharey=False, figsize=(11, 11) ) fig.suptitle("Evolution of the constraints " + "w.r.t. iterations", fontsize=14) n_subplots = nrows * 2 x_iter = np.arange(nb_iter) y_lim = 0.0 vmax = 0.0 # for each subplot for values, name, i in zip(vals.T, vname, np.arange(n_subplots)): # prepare the graph axe = axes.ravel()[i] axe.grid(True) axe.set_title(name) axe.set_xlim([0, nb_iter]) axe.axhline(y_lim, color="k", linewidth=2) # plot values in lines axe.plot(x_iter, values) # Plot color bars cstr_matrix = np.atleast_2d(values) cmap = self.ineq_cstr_cmap vmax = max(vmax, np.max(np.abs(cstr_matrix))) extent = -0.5, nb_iter - 0.5, np.min(cstr_matrix), np.max(cstr_matrix) axe.imshow( cstr_matrix, cmap=cmap, interpolation="nearest", aspect="auto", extent=extent, norm=SymLogNorm(linthresh=1.0, vmin=-vmax, vmax=vmax), alpha=0.6, ) # plot vertical line the last time that g(x)=0 indices = np.where(np.diff(np.sign(values)))[0] if indices != []: ind = indices[-1] x_lim = np.interp( y_lim, values[ind - 1 : ind + 1], x_iter[ind - 1 : ind + 1] ) axe.axvline(x_lim, color="k", linewidth=2) self._save_and_show( fig, save=save, show=show, file_path=file_path, extension=extension )