Random forest classification model

The random forest classification model uses averaging methods on an ensemble of decision trees.

Dependence

The classifier relies on the RandomForestClassifier class of the scikit-learn library.

class gemseo.mlearning.classification.random_forest.RandomForestClassifier(data, transformer=None, input_names=None, output_names=None, n_estimators=100, **parameters)[source]

Random forest classification algorithm.

Constructor.

Parameters
  • data (Dataset) – learning dataset.

  • transformer (dict(str)) – transformation strategy for data groups. If None, do not transform data. Default: None.

  • input_names (list(str)) – names of the input variables.

  • output_names (list(str)) – names of the output variables.

  • n_estimators (int) – number of trees in the forest.

  • parameters – other keyword arguments for sklearn rand. forest.

Example