cluster module¶
This module contains the base classes for clustering algorithms.
The cluster
module
implements the concept of clustering models,
a kind of unsupervised machine learning algorithm
where the goal is to group data into clusters.
Wherever possible,
these methods should be able to predict the class of the new data,
as well as the probability of belonging to each class.
This concept is implemented
through the MLClusteringAlgo
class,
which inherits from the MLUnsupervisedAlgo
class,
and through the MLPredictiveClusteringAlgo
class
which inherits from MLClusteringAlgo
.
Classes:
|
Clustering algorithm. |
|
Predictive clustering algorithm. |
- class gemseo.mlearning.cluster.cluster.MLClusteringAlgo(data, transformer=None, var_names=None, **parameters)[source]¶
Bases:
gemseo.mlearning.core.unsupervised.MLUnsupervisedAlgo
Clustering algorithm.
The inheriting classes shall overload the
MLUnsupervisedAlgo._fit()
method.- Attributes
learning_set (Dataset) – The learning dataset.
parameters (Dict[str,MLAlgoParameterType]) – The parameters of the machine learning algorithm.
transformer (Dict[str,Transformer]) – The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.algo (Any) – The interfaced machine learning algorithm.
learning_set (Dataset) – The learning dataset.
parameters (Dict[str,MLAlgoParameterType]) – The parameters of the machine learning algorithm.
transformer (Dict[str,Transformer]) – The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.algo (Any) – The interfaced machine learning algorithm.
input_names (List[str]) – The names of the variables.
labels (List(int)) – The indices of the clusters for the different samples.
n_clusters (int) – The number of clusters.
- Parameters
data (Dataset) –
transformer (Optional[TransformerType]) –
var_names (Optional[Iterable[str]]) –
parameters (MLAlgoParameterType) –
- Return type
None
Parameters: data: The learning dataset. transformer: The strategies to transform the variables.
The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.**parameters: The parameters of the machine learning algorithm. var_names: The names of the variables.
If None, consider all variables mentioned in the learning dataset.
Attributes:
Return whether the algorithm is trained.
Classes:
Decorators for the internal MLAlgo methods.
Methods:
learn
([samples])Train the machine learning algorithm from the learning dataset.
load_algo
(directory)Load a machine learning algorithm from a directory.
save
([directory, path, save_learning_set])Save the machine learning algorithm.
- ABBR = 'MLUnupervisedAlgo'¶
- class DataFormatters¶
Bases:
object
Decorators for the internal MLAlgo methods.
- FILENAME = 'ml_algo.pkl'¶
- LIBRARY = None¶
- property is_trained¶
Return whether the algorithm is trained.
- learn(samples=None)[source]¶
Train the machine learning algorithm from the learning dataset.
- Parameters
samples (Optional[List[int]]) – The indices of the learning samples. If None, use the whole learning dataset.
- Return type
None
- load_algo(directory)¶
Load a machine learning algorithm from a directory.
- Parameters
directory (str) – The path to the directory where the machine learning algorithm is saved.
- Return type
None
- save(directory=None, path='.', save_learning_set=False)¶
Save the machine learning algorithm.
- Parameters
directory (Optional[str]) – The name of the directory to save the algorithm.
path (str) – The path to parent directory where to create the directory.
save_learning_set (bool) – If False, do not save the learning set to lighten the saved files.
- Returns
The path to the directory where the algorithm is saved.
- Return type
str
- class gemseo.mlearning.cluster.cluster.MLPredictiveClusteringAlgo(data, transformer=None, var_names=None, **parameters)[source]¶
Bases:
gemseo.mlearning.cluster.cluster.MLClusteringAlgo
Predictive clustering algorithm.
The inheriting classes shall overload the
MLUnsupervisedAlgo._fit()
method, and theMLClusteringAlgo._predict()
andMLClusteringAlgo._predict_proba()
methods if possible.- Attributes
learning_set (Dataset) – The learning dataset.
parameters (Dict[str,MLAlgoParameterType]) – The parameters of the machine learning algorithm.
transformer (Dict[str,Transformer]) – The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.algo (Any) – The interfaced machine learning algorithm.
learning_set (Dataset) – The learning dataset.
parameters (Dict[str,MLAlgoParameterType]) – The parameters of the machine learning algorithm.
transformer (Dict[str,Transformer]) – The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.algo (Any) – The interfaced machine learning algorithm.
input_names (List[str]) – The names of the variables.
learning_set (Dataset) – The learning dataset.
parameters (Dict[str,MLAlgoParameterType]) – The parameters of the machine learning algorithm.
transformer (Dict[str,Transformer]) – The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.algo (Any) – The interfaced machine learning algorithm.
learning_set (Dataset) – The learning dataset.
parameters (Dict[str,MLAlgoParameterType]) – The parameters of the machine learning algorithm.
transformer (Dict[str,Transformer]) – The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.algo (Any) – The interfaced machine learning algorithm.
input_names (List[str]) – The names of the variables.
labels (List(int)) – The indices of the clusters for the different samples.
n_clusters (int) – The number of clusters.
- Parameters
data (Dataset) –
transformer (Optional[TransformerType]) –
var_names (Optional[Iterable[str]]) –
parameters (MLAlgoParameterType) –
- Return type
None
Parameters: data: The learning dataset. transformer: The strategies to transform the variables.
The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.**parameters: The parameters of the machine learning algorithm. var_names: The names of the variables.
If None, consider all variables mentioned in the learning dataset.
Attributes:
Return whether the algorithm is trained.
Classes:
Decorators for the internal MLAlgo methods.
Methods:
learn
([samples])Train the machine learning algorithm from the learning dataset.
load_algo
(directory)Load a machine learning algorithm from a directory.
predict
(data)Predict the clusters from the input data.
predict_proba
(data[, hard])Predict the probability of belonging to each cluster from input data.
save
([directory, path, save_learning_set])Save the machine learning algorithm.
- ABBR = 'MLUnupervisedAlgo'¶
- class DataFormatters¶
Bases:
object
Decorators for the internal MLAlgo methods.
- FILENAME = 'ml_algo.pkl'¶
- LIBRARY = None¶
- property is_trained¶
Return whether the algorithm is trained.
- learn(samples=None)¶
Train the machine learning algorithm from the learning dataset.
- Parameters
samples (Optional[List[int]]) – The indices of the learning samples. If None, use the whole learning dataset.
- Return type
None
- load_algo(directory)¶
Load a machine learning algorithm from a directory.
- Parameters
directory (str) – The path to the directory where the machine learning algorithm is saved.
- Return type
None
- predict(data)[source]¶
Predict the clusters from the input data.
The user can specify these input data either as a NumPy array, e.g.
array([1., 2., 3.])
or as a dictionary, e.g.{'a': array([1.]), 'b': array([2., 3.])}
.If the numpy arrays are of dimension 2, their i-th rows represent the input data of the i-th sample; while if the numpy arrays are of dimension 1, there is a single sample.
The type of the output data and the dimension of the output arrays will be consistent with the type of the input data and the dimension of the input arrays.
- Parameters
data (Union[numpy.ndarray, Dict[str, numpy.ndarray]]) – The input data.
- Returns
The predicted cluster for each input data sample.
- Return type
Union[int, numpy.ndarray]
- predict_proba(data, hard=True)[source]¶
Predict the probability of belonging to each cluster from input data.
The user can specified these input data either as a numpy array, e.g.
array([1., 2., 3.])
or as a dictionary, e.g.{'a': array([1.]), 'b': array([2., 3.])}
.If the numpy arrays are of dimension 2, their i-th rows represent the input data of the i-th sample; while if the numpy arrays are of dimension 1, there is a single sample.
The dimension of the output array will be consistent with the dimension of the input arrays.
- Parameters
data (Union[numpy.ndarray, Dict[str, numpy.ndarray]]) – The input data.
hard (bool) – Whether clustering should be hard (True) or soft (False).
- Returns
The probability of belonging to each cluster, with shape (n_samples, n_clusters) or (n_clusters,).
- Return type
numpy.ndarray
- save(directory=None, path='.', save_learning_set=False)¶
Save the machine learning algorithm.
- Parameters
directory (Optional[str]) – The name of the directory to save the algorithm.
path (str) – The path to parent directory where to create the directory.
save_learning_set (bool) – If False, do not save the learning set to lighten the saved files.
- Returns
The path to the directory where the algorithm is saved.
- Return type
str