Source code for gemseo.algos.doe.lib_scalable
# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
"""
Build a diagonal DOE for scalable model construction
****************************************************
"""
from __future__ import division, unicode_literals
import logging
from numpy import array
from gemseo.algos.doe.doe_lib import DOELibrary
LOGGER = logging.getLogger(__name__)
[docs]class DiagonalDOE(DOELibrary):
"""Class used for creation of a diagonal DOE."""
ALGO_LIST = ["DiagonalDOE"]
ALGO_DESC = {"DiagonalDOE": "Diagonal design of experiments"}
def __init__(self):
"""Constructor, initializes the DOE samples."""
super(DiagonalDOE, self).__init__()
for algo in self.ALGO_LIST:
description = DiagonalDOE.ALGO_DESC[algo]
self.lib_dict[algo] = {
DOELibrary.LIB: self.__class__.__name__,
DOELibrary.INTERNAL_NAME: algo,
DOELibrary.DESCRIPTION: description,
}
def _get_options(
self,
eval_jac=False,
n_processes=1,
wait_time_between_samples=0.0,
n_samples=1,
reverse=None,
max_time=0,
**kwargs
): # pylint: disable=W0221
"""Sets the options.
:param eval_jac: evaluate jacobian
:type eval_jac: bool
:param n_processes: number of processes
:type n_processes: int
:param wait_time_between_samples: waiting time between two samples
:type wait_time_between_samples: float
:param n_samples: number of samples
:type n_samples: int
:param reverse: list of dimensions or variables to sample from their
upper bounds to their lower bounds. Default: None.
:type reverse: list(str)
:param max_time: maximum runtime in seconds,
disabled if 0 (Default value = 0)
:type max_time: float
:param kwargs: additional arguments
"""
wtbs = wait_time_between_samples
return self._process_options(
eval_jac=eval_jac,
n_processes=n_processes,
wait_time_between_samples=wtbs,
n_samples=n_samples,
reverse=reverse,
max_time=max_time,
**kwargs
)
def _generate_samples(self, **options):
"""Generates the list of x samples.
:param options: the options dict for the algorithm,
see associated JSON file
"""
reverse = options.get("reverse", [])
names = self.problem.design_space.variables_names
sizes = self.problem.design_space.variables_sizes
name_by_index = {}
start = 0
for name in names:
for index in range(start, start + sizes[name]):
name_by_index[index] = name
start += sizes[name]
samples = []
for index in range(self.problem.dimension):
if str(index) in reverse or name_by_index[index] in reverse:
samples.append(
[
point / (options[self.N_SAMPLES] - 1.0)
for point in range(options[self.N_SAMPLES] - 1, -1, -1)
]
)
else:
samples.append(
[
point / (options[self.N_SAMPLES] - 1.0)
for point in range(0, options[self.N_SAMPLES])
]
)
samples = array(samples).T
return samples