Source code for gemseo.problems.sobieski.wrappers

# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

# Contributors:
#    INITIAL AUTHORS - initial API and implementation and/or initial
#                        documentation
#        :author: Francois Gallard
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""
SSBJ Disciplines wrappers
*************************
"""

from __future__ import division, unicode_literals

import time
from numbers import Number

from gemseo.core.discipline import MDODiscipline
from gemseo.problems.sobieski.core import SobieskiProblem

DTYPE_COMPLEX = "complex128"
DTYPE_DOUBLE = "float64"


[docs]class SobieskiBaseWrapper(MDODiscipline): """Base wrapper for Sobieski problem discipline wrappers and JSON grammars.""" def __init__(self, dtype=DTYPE_DOUBLE): """Constructor. :param dtype: type of data, either "float64" or "complex128". :type dtype: str """ super(SobieskiBaseWrapper, self).__init__(auto_detect_grammar_files=True) self.dtype = dtype self.sobieski_problem = SobieskiProblem(dtype=dtype) self.default_inputs = self.sobieski_problem.get_default_inputs( self.get_input_data_names() ) self.re_exec_policy = self.RE_EXECUTE_DONE_POLICY
[docs] def get_attributes_to_serialize(self): """Defines the attributes to be serialized Can be overloaded by disciplines. :returns: the list of attributes names """ base_d = super(SobieskiBaseWrapper, self).get_attributes_to_serialize() base_d.append("dtype") return base_d
def __setstate__(self, d): """Used by pickle to define what to deserialize. :param d : update self dict from d to deserialize """ super(SobieskiBaseWrapper, self).__setstate__(d) self.sobieski_problem = SobieskiProblem(self.dtype) def _run(self): """Run the discipline.""" raise NotImplementedError()
[docs]class SobieskiMission(SobieskiBaseWrapper): """Sobieski range wrapper using Breguet formula.""" def __init__(self, dtype=DTYPE_DOUBLE, enable_delay=False): """Constructor of wrapper for range computation. :param dtype: type of data, either "float64" or "complex128". :type dtype: str """ super(SobieskiMission, self).__init__(dtype=dtype) self.enable_delay = enable_delay def _run(self): """Compute range.""" if self.enable_delay: if isinstance(self.enable_delay, Number): time.sleep(self.enable_delay) else: time.sleep(1.0) data_names = ["y_14", "y_24", "y_34", "x_shared"] y_14, y_24, y_34, x_shared = self.get_inputs_by_name(data_names) y_4 = self.sobieski_problem.blackbox_mission(x_shared, y_14, y_24, y_34) self.store_local_data(y_4=y_4) def _compute_jacobian(self, inputs=None, outputs=None): """Compute the partial derivatives of all outputs wrt all inputs. :param inputs: Default value = None) :param outputs: Default value = None) """ data_names = ["y_14", "y_24", "y_34", "x_shared"] y_14, y_24, y_34, x_shared = self.get_inputs_by_name(data_names) self.jac = self.sobieski_problem.derive_blackbox_mission( x_shared, y_14, y_24, y_34 )
[docs]class SobieskiStructure(SobieskiBaseWrapper): """Sobieski mass estimation wrapper.""" def __init__(self, dtype=DTYPE_DOUBLE): """Constructor of wrapper for weight computation. :param dtype: type of data, either "float64" or "complex128". :type dtype: str """ super(SobieskiStructure, self).__init__(dtype=dtype) def _run(self): """Compute weight.""" data_names = ["x_1", "y_21", "y_31", "x_shared"] x_1, y_21, y_31, x_shared = self.get_inputs_by_name(data_names) y_1, y_11, y_12, y_14, g_1 = self.sobieski_problem.blackbox_structure( x_shared, y_21, y_31, x_1 ) self.store_local_data(y_1=y_1, y_11=y_11, y_12=y_12, y_14=y_14, g_1=g_1) def _compute_jacobian(self, inputs=None, outputs=None): """Linearization of weight analysis. :param inputs: Default value = None) :param outputs: Default value = None) """ data_names = ["x_1", "y_21", "y_31", "x_shared"] x_1, y_21, y_31, x_shared = self.get_inputs_by_name(data_names) self.jac = self.sobieski_problem.derive_blackbox_structure( x_shared, y_21, y_31, x_1 )
[docs]class SobieskiAerodynamics(SobieskiBaseWrapper): """Sobieski aerodynamic discipline wrapper.""" def __init__(self, dtype=DTYPE_DOUBLE): """Constructor of wrapper for aerodynamic computation. :param dtype: type of data, "float64" or "complex128". :type dtype: str """ super(SobieskiAerodynamics, self).__init__(dtype=dtype) def _run(self): """Compute aerodynamics.""" data_names = ["x_2", "y_12", "y_32", "x_shared"] x_2, y_12, y_32, x_shared = self.get_inputs_by_name(data_names) y_2, y_21, y_23, y_24, g_2 = self.sobieski_problem.blackbox_aerodynamics( x_shared, y_12, y_32, x_2 ) self.store_local_data(y_2=y_2, y_21=y_21, y_23=y_23, y_24=y_24, g_2=g_2) def _compute_jacobian(self, inputs=None, outputs=None): """Compute the partial derivatives of all outputs wrt all inputs. :param inputs: Default value = None) :param outputs: Default value = None) """ data_names = ["x_2", "y_12", "y_32", "x_shared"] x_2, y_12, y_32, x_shared = self.get_inputs_by_name(data_names) self.jac = self.sobieski_problem.derive_blackbox_aerodynamics( x_shared, y_12, y_32, x_2 )
[docs]class SobieskiPropulsion(SobieskiBaseWrapper): """Sobieski propulsion propulsion wrapper.""" def __init__(self, dtype=DTYPE_DOUBLE): """Constructor of wrapper for propulsion computation. :param dtype: type of data, either "float64" or "complex128" :type dtype: str """ super(SobieskiPropulsion, self).__init__(dtype=dtype) def _run(self): """Compute propulsion.""" data_names = ["x_3", "y_23", "x_shared"] x_3, y_23, x_shared = self.get_inputs_by_name(data_names) y_3, y_34, y_31, y_32, g_3 = self.sobieski_problem.blackbox_propulsion( x_shared, y_23, x_3 ) self.store_local_data(y_3=y_3, y_34=y_34, y_31=y_31, y_32=y_32, g_3=g_3) def _compute_jacobian(self, inputs=None, outputs=None): """Compute the partial derivatives of all outputs wrt all inputs. :param inputs: Default value = None) :param outputs: Default value = None) """ data_names = ["x_3", "y_23", "x_shared"] x_3, y_23, x_shared = self.get_inputs_by_name(data_names) self.jac = self.sobieski_problem.derive_blackbox_propulsion(x_shared, y_23, x_3)