# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Class to fit a distribution from data based on OpenTURNS.
Overview
--------
The :class:`.OTDistributionFitter` class considers several samples
of an uncertain variable, fits a user-defined probability distribution
from this dataset and returns a :class:`.OTDistribution`.
It can also return a goodness-of-fit measure
associated with this distribution,
e.g. Bayesian Information Criterion, Kolmogorov test or Chi Squared test,
or select an optimal distribution among a collection according to
a criterion with a threshold.
Construction
------------
The :class:`.OTDistributionFitter` of a given uncertain variable is built
from only two arguments:
- a variable name,
- a one-dimensional numpy array.
Capabilities
------------
Fit a distribution
~~~~~~~~~~~~~~~~~~
The :meth:`.OTDistributionFitter.fit` method takes a distribution name
recognized by OpenTURNS as argument (e.g. 'Normal', 'Uniform', 'Exponential',
...) as argument and returns an :class:`.OTDistribution`
whose underlying OpenTURNS distribution is the specified one fitted
from the dataset passed to the constructor.
Measure the goodness-of-fit
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The :meth:`.OTDistributionFitter.measure` method has two mandatory arguments:
- a distribution which is a either a :class:`.OTDistribution`
or a distribution name from which :meth:`!fit` method
builds a :class:`.OTDistribution`,
- a fitting criterion name.
.. note::
Use the :meth:`.OTDistributionFitter.get_available_criteria` method to get
the complete list of available criteria
and the :meth:`.OTDistributionFitter.get_significance_tests` method
to get the list of available criteria which are significance tests.
The :meth:`.OTDistributionFitter.measure` method can also use a level
associated with the criterion.
The :meth:`.OTDistributionFitter.measure` methods returns a goodness-of-fit
measure whose nature is either a scalar
when the criterion is not a significance test
or a tuple when the criterion is a significance test. In that case,
the first component of the tuple is a boolean indicating if the measured
distribution is acceptable to model the data and the second one is
a dictionary containing the test statistics, the p-value and
the significance level.
Select an optimal distribution
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The :meth:`.OTDistributionFitter.select` method select aims to select an
optimal distribution among a collection. It uses two mandatory arguments:
- a list of distribution, either a list of distributions names
or a list of :class:`.OTDistribution`,
- a fitting criterion name.
The :meth:`.OTDistributionFitter.select` method can also use a level
associated with the criterion and a criterion selection:
- 'best': select the distribution minimizing (or maximizing, depending
on the criterion) the criterion,
- 'first': Select the first distribution for which the criterion is
greater (or lower, depending on the criterion) than the level.
"""
from __future__ import division, unicode_literals
import logging
from typing import Callable, List, Mapping, Sequence, Tuple, Union
import openturns as ots
from numpy import ndarray
from gemseo.uncertainty.distributions.openturns.distribution import OTDistribution
from gemseo.utils.py23_compat import string_types
LOGGER = logging.getLogger(__name__)
MeasureType = Union[Tuple[bool, Mapping[str, float]], float]
[docs]class OTDistributionFitter(object):
"""Fit a probabilistic distribution from a data array.
Attributes:
variable (str): The name of the variable.
data (ndarray): The data array.
"""
_AVAILABLE_DISTRIBUTIONS = {}
for factory in ots.DistributionFactory.GetContinuousUniVariateFactories():
factory_class_name = factory.getImplementation().getClassName()
dist_name = factory_class_name.split("Factory")[0]
_AVAILABLE_DISTRIBUTIONS[dist_name] = getattr(ots, factory_class_name)
AVAILABLE_DISTRIBUTIONS = sorted(_AVAILABLE_DISTRIBUTIONS.keys())
_AVAILABLE_FITTING_TESTS = {
"BIC": ots.FittingTest.BIC,
"Kolmogorov": ots.FittingTest.Kolmogorov,
"ChiSquared": ots.FittingTest.ChiSquared,
}
AVAILABLE_FITTING_TESTS = sorted(_AVAILABLE_FITTING_TESTS.keys())
SIGNIFICANCE_TESTS = ["Kolmogorov", "ChiSquared"]
_CRITERIA_TO_MINIMIZE = ["BIC"]
def __init__(
self,
variable, # type: str
data, # type: ndarray
): # noqa: D205,D212,D415
# type: (...) -> None
"""
Args:
variable: The name of the variable.
data: A data array.
"""
self.variable = variable
try:
isinstance(data, ndarray)
self.data = ots.Sample(data.reshape((-1, 1)))
except AttributeError:
raise TypeError("data must be a numpy array")
def _get_factory(
self,
distribution, # type: str
):
# type: (...) -> ots.DistributionFactory
"""Get the distribution factory.
Args:
distribution: The name of the distribution.
Returns:
An OpenTURNS distribution factory.
"""
try:
distribution_factory = self._AVAILABLE_DISTRIBUTIONS[distribution]
except KeyError:
distributions = ", ".join(list(self._AVAILABLE_DISTRIBUTIONS.keys()))
raise ValueError(
"{} is not a name of "
"distribution available for fitting. "
"Available ones are: {}.".format(distribution, distributions)
)
return distribution_factory
def _get_fitting_test(
self,
criterion, # type: str
):
# type: (...) -> Callable
"""Get the fitting test.
Args:
criterion: The name of a fitting criterion.
Returns:
The OpenTURNS fitting test corresponding to the provided name.
"""
try:
fitting_test = self._AVAILABLE_FITTING_TESTS[criterion]
except KeyError:
tests = ", ".join(list(self._AVAILABLE_FITTING_TESTS.keys()))
raise ValueError(
"%s is not a name of fitting test; "
"Available ones are: %s" % (criterion, tests)
)
return fitting_test
[docs] def fit(
self,
distribution, # type: str
):
# type: (...) -> OTDistribution
"""Fit a distribution.
Args:
distribution: The name of a distribution.
Returns:
The distribution corresponding to the provided name.
"""
factory = self._get_factory(distribution)
fitted_distribution = factory().build(self.data)
parameters = fitted_distribution.getParameter()
distribution = OTDistribution(self.variable, distribution, parameters)
return distribution
[docs] def compute_measure(
self,
distribution, # type: Union[OTDistribution, str]
criterion, # type: str
level=0.05, # type: float
):
# type: (...) -> MeasureType
"""Measure the goodness-of-fit of a distribution to data.
Args:
distribution: A distribution name.
criterion: The name of the goodness-of-fit criterion.
level: A test level,
i.e. the risk of committing a Type 1 error,
that is an incorrect rejection of a true null hypothesis,
for criteria based on test hypothesis.
Returns:
The goodness-of-fit measure.
"""
if isinstance(distribution, string_types):
distribution = self.fit(distribution)
if distribution.dimension > 1:
raise TypeError("A 1D distribution is required.")
distribution = distribution.marginals[0]
fitting_test = self._get_fitting_test(criterion)
if criterion in self.SIGNIFICANCE_TESTS:
result = fitting_test(self.data, distribution, level)
details = {
"p-value": result.getPValue(),
"statistics": result.getStatistic(),
"level": level,
}
result = (result.getBinaryQualityMeasure(), details)
else:
result = fitting_test(self.data, distribution)
return result
[docs] def select(
self,
distributions, # type: Union[Sequence[str], Sequence[OTDistribution]]
fitting_criterion, # type: str
level=0.05, # type: float
selection_criterion="best", # type: str
):
# type: (...) -> OTDistribution
"""Select the best distribution from a list of candidates.
Args:
distributions: The distributions.
fitting_criterion: The name of the goodness-of-fit criterion.
level: A test level,
i.e. the risk of committing a Type 1 error,
that is an incorrect rejection of a true null hypothesis,
for criteria based on test hypothesis.
selection_criterion: The name of the selection criterion.
Either 'first' or 'best'.
Returns:
The best distribution.
"""
measures = []
for index, distribution in enumerate(distributions):
if isinstance(distribution, string_types):
distribution = self.fit(distribution)
measures.append(
self.compute_measure(distribution, fitting_criterion, level)
)
distributions[index] = distribution
index = self.select_from_measures(
measures, fitting_criterion, level, selection_criterion
)
return distributions[index]
[docs] @classmethod
def select_from_measures(
cls,
measures, # type: List[MeasureType]
fitting_criterion, # type: str
level=0.05, # type: float
selection_criterion="best", # type: str
):
# type: (...) -> int
"""Select the best distribution from measures.
Args:
measures: The measures.
fitting_criterion: The name of the goodness-of-fit criterion.
level: A test level,
i.e. the risk of committing a Type 1 error,
that is an incorrect rejection of a true null hypothesis,
for criteria based on test hypothesis.
selection_criterion: The name of the selection criterion.
Either 'first' or 'best'.
Returns:
The index of the best distribution.
"""
if fitting_criterion in cls.SIGNIFICANCE_TESTS:
for index, _ in enumerate(measures):
measures[index] = measures[index][1]["p-value"]
if sum([p_value > level for p_value in measures]) == 0:
LOGGER.warning(
"All criteria values are lower than the significance level %s.",
level,
)
if selection_criterion == "best" or level is None:
index = cls.__find_opt_distribution(measures, fitting_criterion)
else:
index = cls.__apply_first_strategy(measures, fitting_criterion, level)
return index
@classmethod
def __apply_first_strategy(
cls,
measures, # type: List[float]
fitting_criterion, # type: str
level=0.05, # type: float
): # type: (...) -> int
"""Select the best distribution from measures by applying the "first" strategy.
Args:
measures: The measures.
fitting_criterion: The name of the goodness-of-fit criterion.
level: A test level,
i.e. the risk of committing a Type 1 error,
that is an incorrect rejection of a true null hypothesis,
for criteria based on test hypothesis.
Returns:
The index of the best distribution.
"""
select = False
index = 0
for measure in measures:
select = measure >= level
if select:
break
index += 1
if not select:
index = cls.__find_opt_distribution(measures, fitting_criterion)
return index
@classmethod
def __find_opt_distribution(
cls,
measures, # type: List[float]
fitting_criterion, # type: str
):
# type: (...) -> int
"""Select the best distribution from measures by applying the "best" strategy.
Args:
measures: The measures.
fitting_criterion: The name of the goodness-of-fit criterion.
Returns:
The index of the optimum distribution.
"""
if fitting_criterion in cls._CRITERIA_TO_MINIMIZE:
index = measures.index(min(measures))
else:
index = measures.index(max(measures))
return index
@property
def available_distributions(self):
# type: (...) -> List[str]
"""The available distributions."""
return sorted(self._AVAILABLE_DISTRIBUTIONS.keys())
@property
def available_criteria(self):
# type: (...) -> List[str]
"""The available goodness-of-fit criteria."""
return sorted(self._AVAILABLE_FITTING_TESTS.keys())
@property
def available_significance_tests(self):
# type: (...) -> List[str]
"""The significance tests."""
return sorted(self.SIGNIFICANCE_TESTS)