gemseo

api module

Introduction

Here is the Application Programming Interface (API) of GEMSEO, a set of high level functions for ease of use.

Make GEMSEO ever more accessible

The aim of this API is to provide high level functions that are sufficient to use GEMSEO in most cases, without requiring a deep knowledge of GEMSEO.

Besides, these functions shall change much less often than the internal classes, which is key for backward compatibility, which means ensuring that your current scripts using GEMSEO will be usable with the future versions of GEMSEO.

Connect GEMSEO to your favorite tools

The API also facilitates the interfacing of GEMSEO with a platform or other software.

To interface a simulation software with GEMSEO, please refer to: Interfacing simulation software.

Extending GEMSEO

See Extend GEMSEO features.

Table of contents

Algorithms

Cache

Configuration

Coupling

Design space

Disciplines

Formulations

MDA

Post-processing

Scalable

Scenario

Surrogates

API functions

Functions:

compute_doe(variables_space, algo_name[, ...])

Compute a design of experiments (DOE) in a variables space.

configure_logger([logger_name, level, ...])

Configure GEMSEO logging.

create_cache(cache_type[, name])

Return a cache.

create_dataset(name, data[, variables, ...])

Create a dataset from a NumPy array or a data file.

create_design_space()

Create an empty design space.

create_discipline(discipline_name, **options)

Instantiate one or more disciplines.

create_mda(mda_name, disciplines, **options)

Create an multidisciplinary analysis (MDA).

create_parameter_space()

Create an empty parameter space.

create_scalable(name, data[, sizes])

Create a scalable discipline from a dataset.

create_scenario(disciplines, formulation, ...)

Initialize a scenario.

create_surrogate(surrogate[, data, ...])

Create a surrogate discipline, either from a dataset or a regression model.

execute_algo(opt_problem, algo_name[, algo_type])

Solve an optimization problem.

execute_post(to_post_proc, post_name, **options)

Post-process a result.

export_design_space(design_space, output_file)

Save a design space to a text or HDF file.

generate_coupling_graph(disciplines[, ...])

Generate a graph of the couplings between disciplines.

generate_n2_plot(disciplines[, file_path, ...])

Generate a N2 plot from disciplines.

get_algorithm_options_schema(algorithm_name)

Return the schema of the options of an algorithm.

get_all_inputs(disciplines[, recursive])

Return all the input names of the disciplines.

get_all_outputs(disciplines[, recursive])

Return all the output names of the disciplines.

get_available_caches()

Return the names of the available caches.

get_available_disciplines()

Return the names of the available disciplines.

get_available_doe_algorithms()

Return the names of the available design of experiments (DOEs) algorithms.

get_available_formulations()

Return the names of the available formulations.

get_available_mdas()

Return the names of the available multidisciplinary analyses (MDAs).

get_available_opt_algorithms()

Return the names of the available optimization algorithms.

get_available_post_processings()

Return the names of the available optimization post-processings.

get_available_scenario_types()

Return the names of the available scenario types.

get_available_surrogates()

Return the names of the available surrogate disciplines.

get_discipline_inputs_schema(discipline[, ...])

Return the schema of the inputs of a discipline.

get_discipline_options_defaults(discipline_name)

Return the default values of the options of a discipline.

get_discipline_options_schema(discipline_name)

Return the schema of a discipline.

get_discipline_outputs_schema(discipline[, ...])

Return the schema of the outputs of a discipline.

get_formulation_options_schema(formulation_name)

Return the schema of the options of a formulation.

get_formulation_sub_options_schema(...[, ...])

Return the schema of the sub-options of a formulation.

get_formulations_options_defaults(...)

Return the default values of the options of a formulation.

get_formulations_sub_options_defaults(...)

Return the default values of the sub-options of a formulation.

get_mda_options_schema(mda_name[, ...])

Return the schema of the options of a multidisciplinary analysis (MDA).

get_post_processing_options_schema(...[, ...])

Return the schema of the options of a post-processing.

get_scenario_differenciation_modes()

Return the names of the available differentiation modes of a scenario.

get_scenario_differentiation_modes()

Return the names of the available differentiation modes of a scenario.

get_scenario_inputs_schema(scenario[, ...])

Return the schema of the inputs of a scenario.

get_scenario_options_schema(scenario_type[, ...])

Return the schema of the options of a scenario.

get_surrogate_options_schema(surrogate_name)

Return the available options for a surrogate discipline.

import_discipline(file_path)

Import a discipline from a pickle file.

load_dataset(dataset, **options)

Instantiate a dataset.

monitor_scenario(scenario, observer)

Add an observer to a scenario.

print_configuration()

Print the current configuration.

read_design_space(file_path[, header])

Read a design space from a file.

gemseo.api.compute_doe(variables_space, algo_name, size=None, unit_sampling=False, **options)[source]

Compute a design of experiments (DOE) in a variables space.

Parameters
  • variables_space (DesignSpace) – The variables space to be sampled.

  • size (Optional[int]) –

    The size of the DOE. If None, the size is deduced from the options.

    By default it is set to None.

  • algo_name (str) – The DOE algorithm.

  • unit_sampling (bool) –

    Whether to sample in the unit hypercube.

    By default it is set to False.

  • **options (DOELibraryOptionType) – The options of the DOE algorithm.

Returns

The design of experiments whose rows are the samples and columns the variables.

Return type

ndarray

Examples

>>> from gemseo.api import compute_doe, create_design_space
>>> variables_space = create_design_space()
>>> variables_space.add_variable("x", 2, l_b=-1.0, u_b=1.0)
>>> doe = compute_doe(variables_space, algo_name="lhs", size=5)
gemseo.api.configure_logger(logger_name=None, level=20, date_format='%H:%M:%S', message_format='%(levelname)8s - %(asctime)s: %(message)s', filename=None, filemode='a')[source]

Configure GEMSEO logging.

Parameters
  • logger_name (Optional[str]) –

    The name of the logger to configure, i.e. the root logger.

    By default it is set to None.

  • level (str) –

    The logging level, either ‘DEBUG’, ‘INFO’, ‘WARNING’ and ‘CRITICAL’.

    By default it is set to 20.

  • date_format (str) –

    The logging date format.

    By default it is set to %H:%M:%S.

  • message_format (str) –

    The logging message format.

    By default it is set to %(levelname)8s - %(asctime)s: %(message)s.

  • filename (Optional[Union[str,Path]]) –

    The path to the log file, if outputs must be written in a file.

    By default it is set to None.

  • filemode (str) –

    The logging output file mode, either ‘w’ (overwrite) or ‘a’ (append).

    By default it is set to a.

Return type

Logger

Examples

>>> import logging
>>> configure_logger(logging.WARNING)
gemseo.api.create_cache(cache_type, name=None, **options)[source]

Return a cache.

Parameters
  • cache_type (str) – The type of the cache.

  • name (Optional[str]) –

    The name to be given to the cache. If None, use cache_type.

    By default it is set to None.

  • **options (Any) – The options of the cache.

Returns

The cache.

Return type

AbstractCache

Examples

>>> from gemseo.api import create_cache
>>> cache = create_cache('MemoryFullCache')
>>> print(cache)
+--------------------------------+
|        MemoryFullCache         |
+--------------+-----------------+
|   Property   |      Value      |
+--------------+-----------------+
|     Type     | MemoryFullCache |
|  Tolerance   |       0.0       |
| Input names  |       None      |
| Output names |       None      |
|    Length    |        0        |
+--------------+-----------------+
gemseo.api.create_dataset(name, data, variables=None, sizes=None, groups=None, by_group=True, delimiter=',', header=True, default_name=None)[source]

Create a dataset from a NumPy array or a data file.

Parameters
  • name (str) – The name to be given to the dataset.

  • data (Union[ndarray,str,Path]) – The data to be stored in the dataset, either a NumPy array or a file path.

  • variables (Optional[List[str]]) –

    The names of the variables. If None and header is True, read the names from the first line of the file. If None and header is False, use default names based on the patterns the Dataset.DEFAULT_NAMES associated with the different groups.

    By default it is set to None.

  • sizes (Optional[Dict[str,int]]) –

    The sizes of the variables. If None, assume that all the variables have a size equal to 1.

    By default it is set to None.

  • groups (Optional[Dict[str,str]]) –

    The groups of the variables. If None, use Dataset.DEFAULT_GROUP for all the variables.

    By default it is set to None.

  • by_group (bool) –

    If True, store the data by group. Otherwise, store them by variables.

    By default it is set to True.

  • delimiter (str) –

    The field delimiter.

    By default it is set to ,.

  • header (bool) –

    If True and data is a string, read the variables names on the first line of the file.

    By default it is set to True.

  • default_name (Optional[str]) –

    The name of the variable to be used as a pattern when variables is None. If None, use the Dataset.DEFAULT_NAMES for this group if it exists. Otherwise, use the group name.

    By default it is set to None.

Returns

The dataset generated from the NumPy array or data file.

Return type

Dataset

See also

load_dataset

gemseo.api.create_design_space()[source]

Create an empty design space.

Returns

An empty design space.

Return type

DesignSpace

Examples

>>> from gemseo.api import create_design_space
>>> design_space = create_design_space()
>>> design_space.add_variable('x', l_b=-1, u_b=1, value=0.)
>>> print(design_space)
Design Space:
+------+-------------+-------+-------------+-------+
| name | lower_bound | value | upper_bound | type  |
+------+-------------+-------+-------------+-------+
| x    |      -1     |   0   |      1      | float |
+------+-------------+-------+-------------+-------+
gemseo.api.create_discipline(discipline_name, **options)[source]

Instantiate one or more disciplines.

Parameters
  • discipline_name – Either the name of a discipline or the names of several disciplines.

  • **options – The options to be passed to the disciplines constructors.

Returns

The disciplines.

Examples

>>> from gemseo.api import create_discipline
>>> discipline = create_discipline('Sellar1')
>>> discipline.execute()
{'x_local': array([0.+0.j]),
 'x_shared': array([1.+0.j, 0.+0.j]),
 'y_0': array([0.89442719+0.j]),
 'y_1': array([1.+0.j])}
gemseo.api.create_mda(mda_name, disciplines, **options)[source]

Create an multidisciplinary analysis (MDA).

Parameters
  • mda_name (str) – The name of the MDA.

  • disciplines (Sequence[MDODiscipline]) – The disciplines.

  • **options (Any) – The options of the MDA.

Returns

The MDA.

Return type

MDA

Examples

>>> from gemseo.api import create_discipline, create_mda
>>> disciplines = create_discipline(['Sellar1', 'Sellar2'])
>>> mda = create_mda('MDAGaussSeidel', disciplines)
>>> mda.execute()
{'x_local': array([0.+0.j]),
 'x_shared': array([1.+0.j, 0.+0.j]),
 'y_0': array([0.79999995+0.j]),
 'y_1': array([1.79999995+0.j])}
gemseo.api.create_parameter_space()[source]

Create an empty parameter space.

Returns

An empty parameter space.

Return type

ParameterSpace

gemseo.api.create_scalable(name, data, sizes=None, **parameters)[source]

Create a scalable discipline from a dataset.

Parameters
  • name (str) – The name of the class of the scalable model.

  • data (Dataset) – The learning dataset.

  • sizes (Mapping[str,int]) –

    The sizes of the input and output variables.

    By default it is set to None.

  • **parameters (Any) – The parameters of the scalable model.

Returns

The scalable discipline.

Return type

ScalableDiscipline

gemseo.api.create_scenario(disciplines, formulation, objective_name, design_space, name=None, scenario_type='MDO', grammar_type='JSONGrammar', maximize_objective=False, **options)[source]

Initialize a scenario.

Parameters
  • disciplines (Sequence[MDODiscipline]) – The disciplines used to compute the objective, constraints and observables from the design variables.

  • formulation (str) – The name of the MDO formulation, also the name of a class inheriting from MDOFormulation.

  • objective_name (str) – The name of the objective.

  • design_space (Union[DesignSpace,str,Path]) – The design space.

  • name (Optional[str]) –

    The name to be given to this scenario. If None, use the name of the class.

    By default it is set to None.

  • scenario_type (str) –

    The type of the scenario, e.g. “MDO” or “DOE”.

    By default it is set to MDO.

  • grammar_type (str) –

    The type of grammar to use for IO declaration, e.g. “JSONGrammar” or “SimpleGrammar”.

    By default it is set to JSONGrammar.

  • maximize_objective (bool) –

    Whether to maximize the objective.

    By default it is set to False.

  • **options (Any) – The options to be passed to the MDOFormulation.

Return type

Scenario

Examples

>>> from gemseo.api import create_discipline, create_scenario
>>> from gemseo.problems.sellar.sellar_design_space import SellarDesignSpace
>>> disciplines = create_discipline(['Sellar1', 'Sellar2', 'SellarSystem'])
>>> design_space = SellarDesignSpace()
>>> scenario = create_scenario(disciplines, 'MDF', 'obj', design_space,
>>>                            'SellarMDFScenario', 'MDO')
gemseo.api.create_surrogate(surrogate, data=None, transformer={'inputs': <gemseo.mlearning.transform.scaler.min_max_scaler.MinMaxScaler object>, 'outputs': <gemseo.mlearning.transform.scaler.min_max_scaler.MinMaxScaler object>}, disc_name=None, default_inputs=None, input_names=None, output_names=None, **parameters)[source]

Create a surrogate discipline, either from a dataset or a regression model.

Parameters
  • surrogate (Union[str,MLRegressionAlgo]) – Either the class name or the instance of the MLRegressionAlgo.

  • data (Optional[Dataset]) –

    The learning dataset to train the regression model. If None, the regression model is supposed to be trained.

    By default it is set to None.

  • transformer (Optional[TransformerType]) –

    The strategies to transform the variables. The values are instances of Transformer while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, the Transformer will be applied to all the variables of this group. If None, do not transform the variables. The MLRegressionAlgo.DEFAULT_TRANSFORMER uses the MinMaxScaler strategy for both input and output variables.

    By default it is set to {‘inputs’: <gemseo.mlearning.transform.scaler.min_max_scaler.MinMaxScaler object at 0x7f61d0040520>, ‘outputs’: <gemseo.mlearning.transform.scaler.min_max_scaler.MinMaxScaler object at 0x7f61d0040580>}.

  • disc_name (Optional[str]) –

    The name to be given to the surrogate discipline. If None, concatenate ABBR and data.name.

    By default it is set to None.

  • default_inputs (Optional[Dict[str,ndarray]]) –

    The default values of the inputs. If None, use the center of the learning input space.

    By default it is set to None.

  • input_names (Optional[Iterable[str]]) –

    The names of the input variables. If None, consider all input variables mentioned in the learning dataset.

    By default it is set to None.

  • output_names (Optional[Iterable[str]]) –

    The names of the output variables. If None, consider all input variables mentioned in the learning dataset.

    By default it is set to None.

  • **parameters (Any) – The parameters of the machine learning algorithm.

Return type

SurrogateDiscipline

gemseo.api.execute_algo(opt_problem, algo_name, algo_type='opt', **options)[source]

Solve an optimization problem.

Parameters
  • opt_problem (OptimizationProblem) – The optimization problem to be solved.

  • algo_name (str) – The name of the algorithm to be used to solve optimization problem.

  • algo_type (str) –

    The type of algorithm, either “opt” for optimization or “doe” for design of experiments.

    By default it is set to opt.

  • **options (Any) – The options of the algorithm.

Return type

OptimizationResult

Examples

>>> from gemseo.api import execute_algo
>>> from gemseo.problems.analytical.rosenbrock import Rosenbrock
>>> opt_problem = Rosenbrock()
>>> opt_result = execute_algo(opt_problem, 'SLSQP')
>>> opt_result
Optimization result:
|_ Design variables: [0.99999787 0.99999581]
|_ Objective function: 5.054173713127532e-12
|_ Feasible solution: True
gemseo.api.execute_post(to_post_proc, post_name, **options)[source]

Post-process a result.

Parameters
  • to_post_proc (Union[Scenario,OptimizationProblem,str,Path]) – The result to be post-processed, either a DOE scenario, a MDO scenario, an optimization problem or a path to an HDF file containing a saved optimization problem.

  • post_name (str) – The name of the post-processing.

  • **options (Any) – The post-processing options.

Returns

The figures, to be customized if not closed.

Return type

Dict[str, Figure]

Examples

>>> from gemseo.api import create_discipline, create_scenario, execute_post
>>> from gemseo.problems.sellar.sellar_design_space import SellarDesignSpace
>>> disciplines = create_discipline(['Sellar1', 'Sellar2', 'SellarSystem'])
>>> design_space = SellarDesignSpace()
>>> scenario = create_scenario(disciplines, 'MDF', 'obj', design_space,
>>>                            'SellarMDFScenario', 'MDO')
>>> scenario.execute({'algo': 'NLOPT_SLSQP', 'max_iter': 100})
>>> execute_post(scenario, 'OptHistoryView', show=False, save=True)
gemseo.api.export_design_space(design_space, output_file, export_hdf=False, fields=None, header_char='', **table_options)[source]

Save a design space to a text or HDF file.

Parameters
  • design_space (DesignSpace) – The design space to be saved.

  • output_file (Union[str,Path],) – The path to the file.

  • export_hdf (bool) –

    If True, save to an HDF file. Otherwise, save to a text file.

    By default it is set to False.

  • fields (Optional[Sequence[str]]) –

    The fields to be exported. If None, export all fields.

    By default it is set to None.

  • header_char (str) –

    The header character.

    By default it is set to .

  • **table_options (Any) – The names and values of additional attributes for the PrettyTable view generated by get_pretty_table().

Return type

None

Examples

>>> from gemseo.api import create_design_space, export_design_space
>>> design_space = create_design_space()
>>> design_space.add_variable('x', l_b=-1, u_b=1, value=0.)
>>> export_design_space(design_space, 'file.txt')
gemseo.api.generate_coupling_graph(disciplines, file_path='coupling_graph.pdf', full=True)[source]

Generate a graph of the couplings between disciplines.

Parameters
  • disciplines (Sequence[MDODiscipline]) – The disciplines from which the graph is generated.

  • file_path (Union[str,Path]) –

    The path of the file to save the figure.

    By default it is set to coupling_graph.pdf.

  • full (bool) –

    If True, generate the full coupling graph. Otherwise, generate the condensed one.

    By default it is set to True.

Return type

None

Examples

>>> from gemseo.api import create_discipline, generate_coupling_graph
>>> disciplines = create_discipline(['Sellar1', 'Sellar2', 'SellarSystem'])
>>> generate_coupling_graph(disciplines)
gemseo.api.generate_n2_plot(disciplines, file_path='n2.pdf', show_data_names=True, save=True, show=False, figsize=(15, 10), open_browser=False)[source]

Generate a N2 plot from disciplines.

Parameters
  • disciplines (Sequence[MDODiscipline]) – The disciplines from which the N2 chart is generated.

  • file_path (Union[str,Path]) –

    The path of the file to save the figure.

    By default it is set to n2.pdf.

  • show_data_names (bool) –

    If True, show the names of the coupling data ; otherwise, circles are drawn, the size of which depends on the number of coupling names.

    By default it is set to True.

  • save (bool) –

    If True, save the figure to the file_path.

    By default it is set to True.

  • show (bool) –

    If True, show the plot.

    By default it is set to False.

  • figsize (Tuple[int]) –

    The width and height of the figure.

    By default it is set to (15, 10).

  • open_browser (bool) –

    If True, open a browser and display an interactive N2 chart.

    By default it is set to False.

Return type

None

Examples

>>> from gemseo.api import create_discipline, generate_n2_plot
>>> disciplines = create_discipline(['Sellar1', 'Sellar2', 'SellarSystem'])
>>> generate_n2_plot(disciplines)
gemseo.api.get_algorithm_options_schema(algorithm_name, output_json=False, pretty_print=False)[source]

Return the schema of the options of an algorithm.

Parameters
  • algorithm_name (str) – The name of the algorithm.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

Returns

The schema of the options of the algorithm.

Raises

ValueError – When the algorithm is not available.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import get_algorithm_options_schema
>>> schema = get_algorithm_options_schema('NLOPT_SLSQP', pretty_print=True)
gemseo.api.get_all_inputs(disciplines, recursive=False)[source]

Return all the input names of the disciplines.

Parameters
  • disciplines (Iterable[MDODiscipline]) – The disciplines.

  • recursive (bool) –

    If True, search for the inputs of the sub-disciplines, when some disciplines are scenarios.

    By default it is set to False.

Returns

The names of the inputs.

Return type

List[str]

Examples

>>> from gemseo.api import create_discipline, get_all_inputs
>>> disciplines = create_discipline(['Sellar1', 'Sellar2'])
>>> get_all_inputs(disciplines)
['y_0', 'x_shared', 'y_1', 'x_local']
gemseo.api.get_all_outputs(disciplines, recursive=False)[source]

Return all the output names of the disciplines.

Parameters
  • disciplines (Iterable[MDODiscipline]) – The disciplines.

  • recursive (bool) –

    If True, search for the outputs of the sub-disciplines, when some disciplines are scenarios.

    By default it is set to False.

Returns

The names of the outputs.

Return type

List[str]

Examples

>>> from gemseo.api import create_discipline, get_all_outputs
>>> disciplines = create_discipline(['Sellar1', 'Sellar2'])
>>> get_all_outputs(disciplines)
['y_1', 'y_0']
gemseo.api.get_available_caches()[source]

Return the names of the available caches.

Returns

The names of the available caches.

Return type

List[str]

Examples

>>> from gemseo.api import get_available_caches
>>> get_available_caches()
['AbstractFullCache', 'HDF5Cache', 'MemoryFullCache', 'SimpleCache']
gemseo.api.get_available_disciplines()[source]

Return the names of the available disciplines.

Returns

The names of the available disciplines.

Return type

List[str]

Examples

>>> from gemseo.api import get_available_disciplines
>>> print(get_available_disciplines())
['RosenMF', 'SobieskiAerodynamics', 'ScalableKriging', 'DOEScenario',
'MDOScenario', 'SobieskiMission', 'SobieskiBaseWrapper', 'Sellar1',
'Sellar2', 'MDOChain', 'SobieskiStructure', 'AutoPyDiscipline',
'Structure', 'SobieskiPropulsion', 'Scenario', 'AnalyticDiscipline',
'MDOScenarioAdapter', 'ScalableDiscipline', 'SellarSystem', 'Aerodynamics',
'Mission', 'PropaneComb1', 'PropaneComb2', 'PropaneComb3',
'PropaneReaction', 'MDOParallelChain']
gemseo.api.get_available_doe_algorithms()[source]

Return the names of the available design of experiments (DOEs) algorithms.

Returns

The names of the available DOE algorithms.

Return type

List[str]

Examples

>>> from gemseo.api import get_available_doe_algorithms
>>> get_available_doe_algorithms()
gemseo.api.get_available_formulations()[source]

Return the names of the available formulations.

Returns

The names of the available MDO formulations.

Return type

List[str]

Examples

>>> from gemseo.api import get_available_formulations
>>> get_available_formulations()
gemseo.api.get_available_mdas()[source]

Return the names of the available multidisciplinary analyses (MDAs).

Returns

The names of the available MDAs.

Return type

List[str]

Examples

>>> from gemseo.api import get_available_mdas
>>> get_available_mdas()
gemseo.api.get_available_opt_algorithms()[source]

Return the names of the available optimization algorithms.

Returns

The names of the available optimization algorithms.

Return type

List[str]

Examples

>>> from gemseo.api import get_available_opt_algorithms
>>> get_available_opt_algorithms()
gemseo.api.get_available_post_processings()[source]

Return the names of the available optimization post-processings.

Returns

The names of the available post-processings.

Return type

List[str]

Examples

>>> from gemseo.api import get_available_post_processings
>>> print(get_available_post_processings())
['ScatterPlotMatrix', 'VariableInfluence', 'ConstraintsHistory',
'RadarChart', 'Robustness', 'Correlations', 'SOM', 'KMeans',
'ParallelCoordinates', 'GradientSensitivity', 'OptHistoryView',
'BasicHistory', 'ObjConstrHist', 'QuadApprox']
gemseo.api.get_available_scenario_types()[source]

Return the names of the available scenario types.

Returns

The names of the available scenario types.

Return type

List[str]

Examples

>>> from gemseo.api import get_available_scenario_types
>>> get_available_scenario_types()
gemseo.api.get_available_surrogates()[source]

Return the names of the available surrogate disciplines.

Returns

The names of the available surrogate disciplines.

Return type

List[str]

Examples

>>> from gemseo.api import get_available_surrogates
>>> print(get_available_surrogates())
['RBFRegression', 'GaussianProcessRegression', 'LinearRegression', 'PCERegression']
gemseo.api.get_discipline_inputs_schema(discipline, output_json=False, pretty_print=False)[source]

Return the schema of the inputs of a discipline.

Parameters
  • discipline (MDODiscipline) – The discipline.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

Returns

The schema of the inputs of the discipline.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import create_discipline, get_discipline_inputs_schema
>>> discipline = create_discipline('Sellar1')
>>> schema = get_discipline_inputs_schema(discipline, pretty_print=True)
gemseo.api.get_discipline_options_defaults(discipline_name)[source]

Return the default values of the options of a discipline.

Parameters

discipline_name (str) – The name of the discipline.

Returns

The default values of the options of the discipline.

Return type

Dict[str, Any]

Examples

>>> from gemseo.api import get_discipline_options_defaults
>>> get_discipline_options_defaults('Sellar1')
gemseo.api.get_discipline_options_schema(discipline_name, output_json=False, pretty_print=False)[source]

Return the schema of a discipline.

Parameters
  • discipline_name (str) – The name of the formulation.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

Returns

The schema of the discipline.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import get_discipline_options_schema
>>> schema = get_discipline_options_schema('Sellar1', pretty_print=True)
gemseo.api.get_discipline_outputs_schema(discipline, output_json=False, pretty_print=False)[source]

Return the schema of the outputs of a discipline.

Parameters
  • discipline (MDODiscipline) – The discipline.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

Returns

The schema of the outputs of the discipline.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import get_discipline_outputs_schema, create_discipline
>>> discipline = create_discipline('Sellar1')
>>> get_discipline_outputs_schema(discipline, pretty_print=True)
gemseo.api.get_formulation_options_schema(formulation_name, output_json=False, pretty_print=False)[source]

Return the schema of the options of a formulation.

Parameters
  • formulation_name (str) – The name of the formulation.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

Returns

The schema of the options of the formulation.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import get_formulation_options_schema
>>> schema = get_formulation_options_schema('MDF', pretty_print=True)
gemseo.api.get_formulation_sub_options_schema(formulation_name, output_json=False, pretty_print=False, **formulation_options)[source]

Return the schema of the sub-options of a formulation.

Parameters
  • formulation_name (str) – The name of the formulation.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

  • **formulation_options (Any) – The options of the formulation required for its instantiation.

Returns

The schema of the sub-options of the formulation.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import get_formulation_sub_options_schema
>>> schema = get_formulation_sub_options_schema('MDF',
>>>                                             main_mda_class='MDAJacobi',
>>>                                             pretty_print=True)
gemseo.api.get_formulations_options_defaults(formulation_name)[source]

Return the default values of the options of a formulation.

Parameters
  • formulation_name (str) – The name of the formulation.

  • **formulation_options – The options of the formulation required for its instantiation.

Returns

The default values of the options of the formulation.

Return type

Dict[str, Any]

Examples

>>> from gemseo.api import get_formulations_options_defaults
>>> get_formulations_options_defaults('MDF')
{'main_mda_class': 'MDAChain',
 'maximize_objective': False,
 'sub_mda_class': 'MDAJacobi'}
gemseo.api.get_formulations_sub_options_defaults(formulation_name, **formulation_options)[source]

Return the default values of the sub-options of a formulation.

Parameters
  • formulation_name (str) – The name of the formulation.

  • **formulation_options (Any) – The options of the formulation required for its instantiation.

Returns

The default values of the sub-options of the formulation.

Return type

Dict[str, Any]

Examples

>>> from gemseo.api import get_formulations_sub_options_defaults
>>> get_formulations_sub_options_defaults('MDF',
>>>                                       main_mda_class='MDAJacobi')
gemseo.api.get_mda_options_schema(mda_name, output_json=False, pretty_print=False)[source]

Return the schema of the options of a multidisciplinary analysis (MDA).

Parameters
  • mda_name (str) – The name of the MDA.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

Returns

The schema of the options of the MDA.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import get_mda_options_schema
>>> get_mda_options_schema('MDAJacobi')
gemseo.api.get_post_processing_options_schema(post_proc_name, output_json=False, pretty_print=False)[source]

Return the schema of the options of a post-processing.

Parameters
  • post_proc_name (str) – The name of the post-processing.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

Returns

The schema of the options of the post-processing.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import get_post_processing_options_schema
>>> schema = get_post_processing_options_schema('OptHistoryView',
>>>                                             pretty_print=True)
gemseo.api.get_scenario_differenciation_modes()

Return the names of the available differentiation modes of a scenario.

Returns

The names of the available differentiation modes of a scenario.

Examples

>>> from gemseo.api import get_scenario_differentiation_modes
>>> get_scenario_differentiation_modes()
gemseo.api.get_scenario_differentiation_modes()[source]

Return the names of the available differentiation modes of a scenario.

Returns

The names of the available differentiation modes of a scenario.

Examples

>>> from gemseo.api import get_scenario_differentiation_modes
>>> get_scenario_differentiation_modes()
gemseo.api.get_scenario_inputs_schema(scenario, output_json=False, pretty_print=False)[source]

Return the schema of the inputs of a scenario.

Parameters
  • scenario (Scenario) – The scenario.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

Returns

The schema of the inputs of the scenario.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import create_discipline, create_scenario,
get_scenario_inputs_schema
>>> from gemseo.problems.sellar.sellar_design_space import SellarDesignSpace
>>> design_space = SellarDesignSpace()
>>> disciplines = create_discipline(['Sellar1','Sellar2','SellarSystem'])
>>> scenario = create_scenario(disciplines, 'MDF', 'obj', design_space,
'my_scenario', 'MDO')
>>> get_scenario_inputs_schema(scenario)
gemseo.api.get_scenario_options_schema(scenario_type, output_json=False, pretty_print=False)[source]

Return the schema of the options of a scenario.

Parameters
  • scenario_type (str) – The type of the scenario.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

Returns

The schema of the options of the scenario.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import get_scenario_options_schema
>>> get_scenario_options_schema('MDO')
gemseo.api.get_surrogate_options_schema(surrogate_name, output_json=False, pretty_print=False)[source]

Return the available options for a surrogate discipline.

Parameters
  • surrogate_name (str) – The name of the surrogate discipline.

  • output_json (bool) –

    Whether to apply the JSON format to the schema.

    By default it is set to False.

  • pretty_print (bool) –

    Whether to print the schema in a tabular way.

    By default it is set to False.

Returns

The schema of the options of the surrogate discipline.

Return type

Union[str, Dict[str, Any]]

Examples

>>> from gemseo.api import get_surrogate_options_schema
>>> tmp = get_surrogate_options_schema('LinRegSurrogateDiscipline',
>>>                                    pretty_print=True)
gemseo.api.import_discipline(file_path)[source]

Import a discipline from a pickle file.

Parameters

file_path (Union[str,Path]) – The path to the file containing the discipline saved with the method MDODiscipline.serialize().

Returns

The discipline.

Return type

MDODiscipline

gemseo.api.load_dataset(dataset, **options)[source]

Instantiate a dataset.

Typically, benchmark datasets can be found in gemseo.problems.dataset.

Parameters
  • dataset (str) – The name of the dataset (its class name).

  • **options (Any) –

Returns

The dataset.

Return type

Dataset

See also

create_dataset

gemseo.api.monitor_scenario(scenario, observer)[source]

Add an observer to a scenario.

The observer must have an update() method that handles the execution status change of an atom. update(atom) is called everytime an atom execution changes.

Parameters
  • scenario (Scenario) – The scenario to monitor.

  • observer – The observer that handles an update of status.

Return type

None

gemseo.api.print_configuration()[source]

Print the current configuration.

The log message contains the successfully loaded modules and failed imports with the reason.

Examples

>>> from gemseo.api import print_configuration
>>> print_configuration()
Return type

None

gemseo.api.read_design_space(file_path, header=None)[source]

Read a design space from a file.

Parameters
  • file_path (Union[str,Path]) – The path to the text file; it shall contain comma-separated values with a row for each variable and at least the bounds of the variable.

  • header (Optional[str]) –

    The names of the fields saved in the file. If None, read them in the file.

    By default it is set to None.

Returns

The design space.

Return type

DesignSpace

Examples

>>> from gemseo.api import (create_design_space, export_design_space,
>>>     read_design_space)
>>> source_design_space = create_design_space()
>>> source_design_space.add_variable('x', l_b=-1, value=0., u_b=1.)
>>> export_design_space(source_design_space, 'file.txt')
>>> read_design_space = read_design_space('file.txt')
>>> print(read_design_space)
Design Space:
+------+-------------+-------+-------------+-------+
| name | lower_bound | value | upper_bound | type  |
+------+-------------+-------+-------------+-------+
| x    |      -1     |   0   |      1      | float |
+------+-------------+-------+-------------+-------+