Source code for gemseo.mlearning.transform.dimension_reduction.pls
# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Syver Doving Agdestein
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""The Partial Least Square (PLS) regression to reduce the dimension of a variable.
The :class:`PLS` class wraps the PCA from Scikit-learn.
Dependence
----------
This dimension reduction algorithm relies on the PLSRegression class
of the `scikit-learn library <https://scikit-learn.org/stable/modules/
generated/sklearn.cross_decomposition.PLSRegression.html>`_.
"""
from __future__ import division, unicode_literals
from typing import NoReturn, Union
from numpy import matmul, ndarray
from sklearn.cross_decomposition import PLSRegression
from gemseo.mlearning.transform.dimension_reduction.dimension_reduction import (
DimensionReduction,
)
[docs]class PLS(DimensionReduction):
"""Partial Least Square regression."""
CROSSED = True
def __init__(
self,
name="PLS", # type: str
n_components=5, # type: int
**parameters # type: Union[float,int,bool]
): # type: (...) -> None
"""
Args:
**parameters: The optional parameters for sklearn PCA constructor.
"""
super(PLS, self).__init__(name, n_components=n_components, **parameters)
self.algo = PLSRegression(n_components, **parameters)
[docs] def fit(
self,
data, # type: ndarray
other_data, # type: ndarray
): # type: (...) -> None
"""Fit the transformer to the data.
Args:
The data to be fitted.
"""
self.algo.fit(data, other_data)
[docs] def compute_jacobian(
self,
data, # type: ndarray
): # type: (...) -> NoReturn
raise NotImplementedError
[docs] def compute_jacobian_inverse(
self,
data, # type: ndarray
): # type: (...) -> NoReturn
raise NotImplementedError
@property
def components(self): # type: (...) -> NoReturn
"""The principal components."""
raise NotImplementedError