moe module¶
The mixture of experts for regression.
The mixture of experts (MoE) regression model expresses the output as a weighted sum of local surrogate models, where the weights are indicating the class of the input.
Inputs are grouped into clusters by a classification model that is trained on a training set where the output labels are determined through a clustering algorithm. The outputs may be preprocessed through a sensor or a dimension reduction algorithm.
The classification may either be hard, in which case only one of the weights is equal to one, and the rest equal to zero:
or soft, in which case the weights express the probabilities of belonging to each class:
where \(x\) is the input, \(y\) is the output, \(K\) is the number of classes, \((C_k)_{k=1,\cdots,K}\) are the input spaces associated to the classes, \(i_{C_k}(x)\) is the indicator of class \(k\), \(\mathbb{P}(x\in C_k)\) is the probability of class \(k\) given \(x\) and \(f_k(x)\) is the local surrogate model on class \(k\).
This concept is implemented through the MixtureOfExperts
class
which inherits from the MLRegressionAlgo
class.
Classes:
|
Mixture of experts regression. |
- class gemseo.mlearning.regression.moe.MixtureOfExperts(data, transformer=None, input_names=None, output_names=None, hard=True)[source]¶
Bases:
gemseo.mlearning.regression.regression.MLRegressionAlgo
Mixture of experts regression.
- parameters¶
The parameters of the machine learning algorithm.
- Type
Dict[str,MLAlgoParameterType]
- transformer¶
The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.- Type
Dict[str,Transformer]
- algo¶
The interfaced machine learning algorithm.
- Type
Any
- input_names¶
The names of the input variables.
- Type
List[str]
- output_names¶
The names of the output variables.
- Type
List[str]
- input_space_center¶
The center of the input space.
- Type
Dict[str,ndarray]
- hard¶
Whether clustering/classification should be hard or soft.
- Type
bool
- cluster_algo¶
The name of the clustering algorithm.
- Type
str
- classif_algo¶
The name of the classification algorithm.
- Type
str
- regress_algo¶
The name of the regression algorithm.
- Type
str
- cluster_params¶
The parameters of the clustering algorithm.
- Type
Optional[MLAlgoParameterType]
- classif_params¶
The parameters of the classification algorithm.
- Type
Optional[MLAlgoParameterType]
- regress_params¶
The parameters of the regression algorithm.
- Type
Optional[MLAlgoParameterType]
- cluster_measure¶
The quality measure for the clustering algorithms.
- Type
Dict[str,Union[str,EvalOptionType]]
- classif_measure¶
The quality measure for the classification algorithms.
- Type
Dict[str,Union[str,EvalOptionType]]
- regress_measure¶
The quality measure for the regression algorithms.
- Type
Dict[str,Union[str,EvalOptionType]]
- cluster_cands¶
The clustering algorithm candidates.
- Type
List[MLAlgoType]
- classif_cands¶
The classification algorithm candidates.
- Type
List[MLAlgoType]
- regress_cands¶
The regression algorithm candidates.
- Type
List[MLAlgoType]
- clusterer¶
The clustering algorithm.
- Type
- classifier¶
The classification algorithm.
- Type
- regress_models¶
The regression algorithms.
- Type
List(MLRegressionAlgo)
Initialize self. See help(type(self)) for accurate signature.
- Parameters
data (Dataset) – The learning dataset.
transformer (Optional[TransformerType]) –
The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.By default it is set to None.
input_names (Optional[Iterable[str]]) –
The names of the input variables. If None, consider all input variables mentioned in the learning dataset.
By default it is set to None.
output_names (Optional[Iterable[str]]) –
The names of the output variables. If None, consider all input variables mentioned in the learning dataset.
By default it is set to None.
hard (bool) –
Whether clustering/classification should be hard or soft.
By default it is set to True.
- Return type
None
Attributes:
The input data matrix.
The dimension of the input variables before applying the transformers.
Return whether the algorithm is trained.
The cluster labels.
The indices of the learning samples used for the training.
The number of clusters.
The output data matrix.
The dimension of the output variables before applying the transformers.
Classes:
Machine learning regression model decorators.
Methods:
add_classifier_candidate
(name[, ...])Add a candidate for classification.
add_clusterer_candidate
(name[, calib_space, ...])Add a candidate for clustering.
add_regressor_candidate
(name[, calib_space, ...])Add a candidate for regression.
learn
([samples])Train the machine learning algorithm from the learning dataset.
load_algo
(directory)Load a machine learning algorithm from a directory.
predict
(input_data, *args, **kwargs)Evaluate 'predict' with either array or dictionary-based input data.
predict_class
(input_data, *args, **kwargs)Evaluate 'predict' with either array or dictionary-based input data.
predict_jacobian
(input_data, *args, **kwargs)Evaluate 'predict_jac' with either array or dictionary-based data.
predict_local_model
(input_data, *args, **kwargs)Evaluate 'predict' with either array or dictionary-based input data.
predict_raw
(input_data)Predict output data from input data.
save
([directory, path, save_learning_set])Save the machine learning algorithm.
set_classification_measure
(measure, ...)Set the quality measure for the classification algorithms.
set_classifier
(classif_algo, **classif_params)Set the classification algorithm.
set_clusterer
(cluster_algo, **cluster_params)Set the clustering algorithm.
set_clustering_measure
(measure, **eval_options)Set the quality measure for the clustering algorithms.
set_regression_measure
(measure, **eval_options)Set the quality measure for the regression algorithms.
set_regressor
(regress_algo, **regress_params)Set the regression algorithm.
- ABBR = 'MoE'¶
- DEFAULT_TRANSFORMER = {'inputs': <gemseo.mlearning.transform.scaler.min_max_scaler.MinMaxScaler object>, 'outputs': <gemseo.mlearning.transform.scaler.min_max_scaler.MinMaxScaler object>}¶
- class DataFormatters[source]¶
Bases:
gemseo.mlearning.regression.regression.MLRegressionAlgo.DataFormatters
Machine learning regression model decorators.
Methods:
format_dict
(predict)Make an array-based function be called with a dictionary of NumPy arrays.
format_dict_jacobian
(predict_jac)Wrap an array-based function to make it callable with a dictionary of NumPy arrays.
format_input_output
(predict)Make a function robust to type, array shape and data transformation.
format_predict_class_dict
(predict)Make an array-based function be called with a dictionary of NumPy arrays.
format_samples
(predict)Make a 2D NumPy array-based function work with 1D NumPy array.
format_transform
([transform_inputs, ...])Force a function to transform its input and/or output variables.
transform_jacobian
(predict_jac)Apply transformation to inputs and inverse transformation to outputs.
- classmethod format_dict(predict)¶
Make an array-based function be called with a dictionary of NumPy arrays.
- Parameters
predict (Callable[[numpy.ndarray], numpy.ndarray]) – The function to be called; it takes a NumPy array in input and returns a NumPy array.
- Returns
A function making the function ‘predict’ work with either a NumPy data array or a dictionary of NumPy data arrays indexed by variables names. The evaluation will have the same type as the input data.
- Return type
Callable[[Union[numpy.ndarray, Mapping[str, numpy.ndarray]]], Union[numpy.ndarray, Mapping[str, numpy.ndarray]]]
- classmethod format_dict_jacobian(predict_jac)¶
Wrap an array-based function to make it callable with a dictionary of NumPy arrays.
- Parameters
predict_jac (Callable[[numpy.ndarray], numpy.ndarray]) – The function to be called; it takes a NumPy array in input and returns a NumPy array.
- Returns
The wrapped ‘predict_jac’ function, callable with either a NumPy data array or a dictionary of numpy data arrays indexed by variables names. The return value will have the same type as the input data.
- Return type
Callable[[Union[numpy.ndarray, Mapping[str, numpy.ndarray]]], Union[numpy.ndarray, Mapping[str, numpy.ndarray]]]
- classmethod format_input_output(predict)¶
Make a function robust to type, array shape and data transformation.
- Parameters
predict (Callable[[numpy.ndarray], numpy.ndarray]) – The function of interest to be called.
- Returns
A function calling the function of interest ‘predict’, while guaranteeing consistency in terms of data type and array shape, and applying input and/or output data transformation if required.
- Return type
Callable[[Union[numpy.ndarray, Mapping[str, numpy.ndarray]]], Union[numpy.ndarray, Mapping[str, numpy.ndarray]]]
- classmethod format_predict_class_dict(predict)[source]¶
Make an array-based function be called with a dictionary of NumPy arrays.
- Parameters
predict (Callable[[numpy.ndarray], numpy.ndarray]) – The function to be called; it takes a NumPy array in input and returns a NumPy array.
- Returns
A function making the function ‘predict’ work with either a NumPy data array or a dictionary of NumPy data arrays indexed by variables names. The evaluation will have the same type as the input data.
- Return type
Callable[[Union[numpy.ndarray, Mapping[str, numpy.ndarray]]], Union[numpy.ndarray, Mapping[str, numpy.ndarray]]]
- classmethod format_samples(predict)¶
Make a 2D NumPy array-based function work with 1D NumPy array.
- Parameters
predict (Callable[[numpy.ndarray], numpy.ndarray]) – The function to be called; it takes a 2D NumPy array in input and returns a 2D NumPy array. The first dimension represents the samples while the second one represents the components of the variables.
- Returns
A function making the function ‘predict’ work with either a 1D NumPy array or a 2D NumPy array. The evaluation will have the same dimension as the input data.
- Return type
Callable[[numpy.ndarray], numpy.ndarray]
- classmethod format_transform(transform_inputs=True, transform_outputs=True)¶
Force a function to transform its input and/or output variables.
- Parameters
transform_inputs (bool) –
Whether to transform the input variables.
By default it is set to True.
transform_outputs (bool) –
Whether to transform the output variables.
By default it is set to True.
- Returns
A function evaluating a function of interest, after transforming its input data and/or before transforming its output data.
- Return type
Callable[[numpy.ndarray], numpy.ndarray]
- classmethod transform_jacobian(predict_jac)¶
Apply transformation to inputs and inverse transformation to outputs.
- Parameters
predict_jac (Callable[[numpy.ndarray], numpy.ndarray]) – The function of interest to be called.
- Returns
A function evaluating the function ‘predict_jac’, after transforming its input data and/or before transforming its output data.
- Return type
Callable[[numpy.ndarray], numpy.ndarray]
- FILENAME = 'ml_algo.pkl'¶
- LABELS = 'labels'¶
- LIBRARY = None¶
- add_classifier_candidate(name, calib_space=None, calib_algo=None, **option_lists)[source]¶
Add a candidate for classification.
- Parameters
name (str) – The name of a classification algorithm.
calib_space (Optional[gemseo.algos.design_space.DesignSpace]) –
The space defining the calibration variables.
By default it is set to None.
calib_algo (Optional[Dict[str, Union[str, int]]]) –
The name and options of the DOE or optimization algorithm, e.g. {“algo”: “fullfact”, “n_samples”: 10}). If None, do not perform calibration.
By default it is set to None.
option_lists (***) – Parameters for the clustering algorithm candidate. Each parameter has to be enclosed within a list. The list may contain different values to try out for the given parameter, or only one.
**option_lists (Optional[List[Optional[Any]]]) –
- Return type
None
- add_clusterer_candidate(name, calib_space=None, calib_algo=None, **option_lists)[source]¶
Add a candidate for clustering.
- Parameters
name (str) – The name of a clustering algorithm.
calib_space (Optional[gemseo.algos.design_space.DesignSpace]) –
The space defining the calibration variables.
By default it is set to None.
calib_algo (Optional[Dict[str, Union[str, int]]]) –
The name and options of the DOE or optimization algorithm, e.g. {“algo”: “fullfact”, “n_samples”: 10}). If None, do not perform calibration.
By default it is set to None.
option_lists (***) – Parameters for the clustering algorithm candidate. Each parameter has to be enclosed within a list. The list may contain different values to try out for the given parameter, or only one.
**option_lists (Optional[List[Optional[Any]]]) –
- Return type
None
- add_regressor_candidate(name, calib_space=None, calib_algo=None, **option_lists)[source]¶
Add a candidate for regression.
- Parameters
name (str) – The name of a regression algorithm.
calib_space (Optional[gemseo.algos.design_space.DesignSpace]) –
The space defining the calibration variables.
By default it is set to None.
calib_algo (Optional[Dict[str, Union[str, int]]]) –
The name and options of the DOE or optimization algorithm, e.g. {“algo”: “fullfact”, “n_samples”: 10}). If None, do not perform calibration.
By default it is set to None.
option_lists (***) – Parameters for the clustering algorithm candidate. Each parameter has to be enclosed within a list. The list may contain different values to try out for the given parameter, or only one.
**option_lists (Optional[List[Optional[Any]]]) –
- Return type
None
- property input_data¶
The input data matrix.
- property input_shape¶
The dimension of the input variables before applying the transformers.
- property is_trained¶
Return whether the algorithm is trained.
- property labels¶
The cluster labels.
- learn(samples=None)¶
Train the machine learning algorithm from the learning dataset.
- Parameters
samples (Optional[Sequence[int]]) –
The indices of the learning samples. If None, use the whole learning dataset.
By default it is set to None.
- Return type
None
- property learning_samples_indices¶
The indices of the learning samples used for the training.
- load_algo(directory)[source]¶
Load a machine learning algorithm from a directory.
- Parameters
directory (Union[str, pathlib.Path]) – The path to the directory where the machine learning algorithm is saved.
- Return type
None
- property n_clusters¶
The number of clusters.
- property output_data¶
The output data matrix.
- property output_shape¶
The dimension of the output variables before applying the transformers.
- predict(input_data, *args, **kwargs)¶
Evaluate ‘predict’ with either array or dictionary-based input data.
Firstly, the pre-processing stage converts the input data to a NumPy data array, if these data are expressed as a dictionary of NumPy data arrays.
Then, the processing evaluates the function ‘predict’ from this NumPy input data array.
Lastly, the post-processing transforms the output data to a dictionary of output NumPy data array if the input data were passed as a dictionary of NumPy data arrays.
- Parameters
input_data (Union[numpy.ndarray, Mapping[str, numpy.ndarray]]) – The input data.
*args – The positional arguments of the function ‘predict’.
**kwargs – The keyword arguments of the function ‘predict’.
- Returns
The output data with the same type as the input one.
- Return type
Union[numpy.ndarray, Mapping[str, numpy.ndarray]]
- predict_class(input_data, *args, **kwargs)[source]¶
Evaluate ‘predict’ with either array or dictionary-based input data.
Firstly, the pre-processing stage converts the input data to a NumPy data array, if these data are expressed as a dictionary of NumPy data arrays.
Then, the processing evaluates the function ‘predict’ from this NumPy input data array.
Lastly, the post-processing transforms the output data to a dictionary of output NumPy data array if the input data were passed as a dictionary of NumPy data arrays.
- Parameters
input_data (Union[numpy.ndarray, Mapping[str, numpy.ndarray]]) – The input data.
*args – The positional arguments of the function ‘predict’.
**kwargs – The keyword arguments of the function ‘predict’.
- Returns
The output data with the same type as the input one.
- Return type
Union[numpy.ndarray, Mapping[str, numpy.ndarray]]
- predict_jacobian(input_data, *args, **kwargs)¶
Evaluate ‘predict_jac’ with either array or dictionary-based data.
Firstly, the pre-processing stage converts the input data to a NumPy data array, if these data are expressed as a dictionary of NumPy data arrays.
Then, the processing evaluates the function ‘predict_jac’ from this NumPy input data array.
Lastly, the post-processing transforms the output data to a dictionary of output NumPy data array if the input data were passed as a dictionary of NumPy data arrays.
- Parameters
input_data – The input data.
*args – The positional arguments of the function ‘predict_jac’.
**kwargs – The keyword arguments of the function ‘predict_jac’.
- Returns
The output data with the same type as the input one.
- predict_local_model(input_data, *args, **kwargs)¶
Evaluate ‘predict’ with either array or dictionary-based input data.
Firstly, the pre-processing stage converts the input data to a NumPy data array, if these data are expressed as a dictionary of NumPy data arrays.
Then, the processing evaluates the function ‘predict’ from this NumPy input data array.
Lastly, the post-processing transforms the output data to a dictionary of output NumPy data array if the input data were passed as a dictionary of NumPy data arrays.
- Parameters
input_data (Union[numpy.ndarray, Mapping[str, numpy.ndarray]]) – The input data.
*args – The positional arguments of the function ‘predict’.
**kwargs – The keyword arguments of the function ‘predict’.
- Returns
The output data with the same type as the input one.
- Return type
Union[numpy.ndarray, Mapping[str, numpy.ndarray]]
- predict_raw(input_data)¶
Predict output data from input data.
- Parameters
input_data (numpy.ndarray) – The input data with shape (n_samples, n_inputs).
- Returns
The predicted output data with shape (n_samples, n_outputs).
- Return type
numpy.ndarray
- save(directory=None, path='.', save_learning_set=False)¶
Save the machine learning algorithm.
- Parameters
directory (Optional[str]) –
The name of the directory to save the algorithm.
By default it is set to None.
path (Union[str, pathlib.Path]) –
The path to parent directory where to create the directory.
By default it is set to ..
save_learning_set (bool) –
Whether to save the learning set or get rid of it to lighten the saved files.
By default it is set to False.
- Returns
The path to the directory where the algorithm is saved.
- Return type
str
- set_classification_measure(measure, **eval_options)[source]¶
Set the quality measure for the classification algorithms.
- Parameters
measure (gemseo.mlearning.qual_measure.quality_measure.MLQualityMeasure) – The quality measure.
**eval_options (Optional[Union[Sequence[int], bool, int, gemseo.core.dataset.Dataset]]) – The options for the quality measure.
- Return type
None
- set_classifier(classif_algo, **classif_params)[source]¶
Set the classification algorithm.
- Parameters
classif_algo (str) – The name of the classification algorithm.
**classif_params (Optional[Any]) – The parameters of the classification algorithm.
- Return type
None
- set_clusterer(cluster_algo, **cluster_params)[source]¶
Set the clustering algorithm.
- Parameters
cluster_algo (str) – The name of the clustering algorithm.
**cluster_params (Optional[Any]) – The parameters of the clustering algorithm.
- Return type
None
- set_clustering_measure(measure, **eval_options)[source]¶
Set the quality measure for the clustering algorithms.
- Parameters
measure (gemseo.mlearning.qual_measure.quality_measure.MLQualityMeasure) – The quality measure.
**eval_options (Optional[Union[Sequence[int], bool, int, gemseo.core.dataset.Dataset]]) – The options for the quality measure.
- Return type
None
- set_regression_measure(measure, **eval_options)[source]¶
Set the quality measure for the regression algorithms.
- Parameters
measure (gemseo.mlearning.qual_measure.quality_measure.MLQualityMeasure) – The quality measure.
**eval_options (Optional[Union[Sequence[int], bool, int, gemseo.core.dataset.Dataset]]) – The options for the quality measure.
- Return type
None