Source code for gemseo.core.mdofunctions.mdo_function

# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

# Contributors:
#    INITIAL AUTHORS - initial API and implementation and/or initial
#                        documentation
#        :author: Francois Gallard, Charlie Vanaret
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""Base class to describe a function."""
from __future__ import division, unicode_literals

import logging
from multiprocessing import Value
from numbers import Number
from typing import (
    Callable,
    Dict,
    Iterable,
    List,
    NoReturn,
    Optional,
    Sequence,
    Sized,
    Tuple,
    Union,
)

from numpy import abs as np_abs
from numpy import (
    absolute,
    add,
    array,
    atleast_1d,
    atleast_2d,
    concatenate,
    empty,
    matmul,
    multiply,
    ndarray,
    ones_like,
    subtract,
    vstack,
    where,
    zeros,
    zeros_like,
)
from numpy.linalg import multi_dot, norm
from six import string_types

from gemseo.algos.database import Database
from gemseo.algos.design_space import DesignSpace
from gemseo.utils.derivatives_approx import ComplexStep, FirstOrderFD

LOGGER = logging.getLogger(__name__)

OperandType = Union[ndarray, Number]
OperatorType = Callable[[OperandType, OperandType], OperandType]


[docs]class MDOFunction(object): """The standard definition of an array-based function with algebraic operations. :class:`MDOFunction` is the key class to define the objective function, the constraints and the observables of an :class:`.OptimizationProblem`. A :class:`MDOFunction` is initialized from an optional callable and a name, e.g. :code:`func = MDOFunction(lambda x: 2*x, "my_function")`. .. note:: The callable can be set to :code:`None` when the user does not want to use a callable but a database to browse for the output vector corresponding to an input vector (see :meth:`set_pt_from_database`). The following information can also be provided at initialization: - the type of the function, e.g. :code:`f_type="obj"` if the function will be used as an objective (see :attr:`AVAILABLE_TYPES` for the available types), - the function computing the Jacobian matrix, e.g. :code:`jac=lambda x: array([2.])`, - the literal expression to be used for the string representation of the object, e.g. :code:`expr="2*x"`, - the names of the inputs and outputs of the function, e.g. :code:`args=["x"]` and :code:`outvars=["y"]`. .. warning:: For the literal expression, do not use `"f(x) = 2*x"` nor `"f = 2*x"` but `"2*x"`. The other elements will be added automatically in the string representation of the function based on the name of the function and the names of its inputs. After the initialization, all of these arguments can be overloaded with setters, e.g. :attr:`args`. The original function and Jacobian function can be accessed with the properties :attr:`func` and :attr:`jac`. A :class:`MDOFunction` is callable: :code:`output = func(array([3.])) # expected: array([6.])`. Elementary operations can be performed with :class:`MDOFunction` instances: addition (:code:`func = func1 + func2` or :code:`func = func1 + offset`), subtraction (:code:`func = func1 - func2` or :code:`func = func1 - offset`), multiplication (:code:`func = func1 * func2` or :code:`func = func1 * factor`) and opposite (:code:`func = -func1`). It is also possible to build a :class:`MDOFunction` as a concatenation of :class:`MDOFunction` objects: :code:`func = MDOFunction.concatenate([func1, func2, func3], "my_func_123"`). Moreover, a :class:`MDOFunction` can be approximated with either a first-order or second-order Taylor polynomial at a given input vector, using respectively :meth:`linear_approximation` and :meth:`quadratic_approx`; such an approximation is also a :class:`MDOFunction`. Lastly, the user can check the Jacobian function by means of approximation methods (see :meth:`check_grad`). Attributes: last_eval (Optional[ndarray]): The value of the function output at the last evaluation; None if it has not yet been evaluated. force_real (bool): Whether to cast the results to real value. special_repr (Optional[str]): The string representation of the function overloading its default string ones. If None, the default string representation is used. """ TYPE_OBJ = "obj" # type: str """The type of function for objective.""" TYPE_EQ = "eq" # type: str """The type of function for equality constraint.""" TYPE_INEQ = "ineq" # type: str """The type of function for inequality constraint.""" TYPE_OBS = "obs" # type: str """The type of function for observable.""" AVAILABLE_TYPES = [TYPE_OBJ, TYPE_EQ, TYPE_INEQ, TYPE_OBS] # type: List[str] """The available types of function.""" DICT_REPR_ATTR = [ "name", "f_type", "expr", "args", "dim", "special_repr", ] # type: List[str] """The names of the attributes to be serialized.""" DEFAULT_ARGS_BASE = "x" # type: str """The default name base for the inputs.""" INDEX_PREFIX = "!" # type: str """The character used to separate a name base and a prefix, e.g. `"x!1`.""" COEFF_FORMAT_1D = "{:.2e}" # type: str """The format to be applied to a number when represented in a vector.""" # ensure that coefficients strings have same length COEFF_FORMAT_ND = "{: .2e}" # type: str """The format to be applied to a number when represented in a matrix.""" # ensure that coefficients strings have same length # N.B. the space character ensures same length whatever the sign of the coefficient def __init__( self, func, # type: Optional[Callable[[ndarray],ndarray]] name, # type: str f_type=None, # type: Optional[str] jac=None, # type: Optional[Callable[[ndarray],ndarray]] expr=None, # type: Optional[str] args=None, # type: Optional[Sequence[str]] dim=None, # type: Optional[int] outvars=None, # type: Optional[Sequence[str]] force_real=False, # type: bool special_repr=None, # type: Optional[str] ): # type: (...) -> None """ Args: func: The original function to be actually called. If None, the function will not have an original function. name: The name of the function. f_type: The type of the function among :attr:`AVAILABLE_TYPES`. If None, the function will have no type. jac: The original Jacobian function to be actually called. If None, the function will not have an original Jacobian function. expr: The expression of the function, e.g. `"2*x"`. If None, the function will have no expression. args: The names of the inputs of the function. If None, the inputs of the function will have no names. dim: The dimension of the output space of the function. If None, the dimension of the output space of the function will be deduced from the evaluation of the function. outvars: The names of the outputs of the function. If None, the outputs of the function will have no names. force_real: If True, cast the results to real value. special_repr: Overload the default string representation of the function. If None, use the default string representation. """ super(MDOFunction, self).__init__() self._n_calls = Value("i", 0) # Initialize attributes self._f_type = None self._func = NotImplementedCallable() self._jac = NotImplementedCallable() self._name = None self._args = None self._expr = None self._dim = None self._outvars = None # Use setters to check values self.func = func self.jac = jac self.name = name self.f_type = f_type self.expr = expr self.args = args self.dim = dim self.outvars = outvars self.last_eval = None self.force_real = force_real self.special_repr = special_repr @property def n_calls(self): # type: (...) -> int """The number of times the function has been evaluated. This count is both multiprocess- and multithread-safe, thanks to the locking process used by :meth:`evaluate`. """ return self._n_calls.value @n_calls.setter def n_calls( self, value, # type: int ): # type: (...) -> None with self._n_calls.get_lock(): self._n_calls.value = value @property def func(self): # type: (...) -> Callable[[ndarray],ndarray] """The function to be evaluated from a given input vector.""" return self.__counted_f def __counted_f( self, x_vect, # type: ndarray ): # type: (...) -> ndarray """Evaluate the function and store the result in :attr:`last_eval`. This evaluation is both multiprocess- and multithread-safe, thanks to a locking process. Args: x_vect: The value of the inputs of the function. Returns: The value of the outputs of the function. """ with self._n_calls.get_lock(): self._n_calls.value += 1 val = self._func(x_vect) self.last_eval = val return val @func.setter def func( self, f_pointer, # type: Callable[[ndarray],ndarray] ): # type: (...) -> None self._n_calls.value = 0 self._func = f_pointer def __call__( self, x_vect, # type: ndarray ): # type: (...) -> ndarray """Evaluate the function. This method can cast the result to real value according to the value of the attribute :attr:`force_real`. Args: x_vect: The value of the inputs of the function. Returns: The value of the outputs of the function. """ val = self.evaluate(x_vect, self.force_real) return val
[docs] def evaluate( self, x_vect, # type: ndarray force_real=False, # type: bool ): # type: (...) -> ndarray """Evaluate the function and store the dimension of the output space. Args: x_vect: The value of the inputs of the function. force_real: If True, cast the result to real value. Returns: The value of the output of the function. """ val = self.__counted_f(x_vect) if force_real: val = val.real self.dim = atleast_1d(val).shape[0] return val
@property def name(self): # type: (...) -> str """The name of the function. Raises: TypeError: If the name of the function is not a string. """ return self._name @name.setter def name( self, name, # type: str ): # type: (...) -> None if name is not None and not isinstance(name, string_types): raise TypeError( "MDOFunction name must be a string; got {} instead.".format(type(name)) ) self._name = name @property def f_type(self): # type: (...) -> str """The type of the function, among :attr:`AVAILABLE_TYPES`. Raises: ValueError: If the type of function is not available. """ return self._f_type @f_type.setter def f_type( self, f_type, # type: str ): # type: (...) -> None if f_type is not None and f_type not in self.AVAILABLE_TYPES: raise ValueError( "MDOFunction type must be among {}; got {} instead.".format( self.AVAILABLE_TYPES, f_type ) ) self._f_type = f_type @property def jac(self): # type: (...) -> Callable[[ndarray],ndarray] """The Jacobian function to be evaluated from a given input vector. Raises: TypeError: If the Jacobian function is not callable. """ return self._jac @jac.setter def jac( self, jac, # type: Callable[[ndarray],ndarray] ): # type: (...) -> None if jac is not None: if not callable(jac): raise TypeError("Jacobian function must be callable.") self._jac = jac @property def args(self): # type: (...) -> Sequence[str] """The names of the inputs of the function.""" return self._args @args.setter def args( self, args, # type: Optional[Union[Iterable[str],ndarray]] ): # type: (...) -> None if args is not None: if isinstance(args, ndarray): self._args = args.tolist() else: self._args = list(args) else: self._args = None @property def expr(self): # type: (...) -> str """The expression of the function, e.g. `"2*x"`. Raises: TypeError: If the expression is not a string. """ return self._expr @expr.setter def expr( self, expr, # type: str ): # type: (...) -> None if expr is not None and not isinstance(expr, string_types): raise TypeError( "Expression must be a string; got {} instead.".format(type(expr)) ) self._expr = expr @property def dim(self): # type: (...) -> int """The dimension of the output space of the function. Raises: TypeError: If the dimension of the output space is not an integer. """ return self._dim @dim.setter def dim( self, dim, # type: int ): # type: (...) -> None if dim is not None and not int(dim) == dim: raise TypeError( "The dimension must be an integer; got {} instead.".format(type(int)) ) self._dim = dim @property def outvars(self): # type: (...) -> Sequence[str] """The names of the outputs of the function.""" return self._outvars @outvars.setter def outvars( self, outvars, # type: Sequence[str] ): # type: (...) -> None if outvars is not None: if isinstance(outvars, ndarray): self._outvars = outvars.tolist() else: self._outvars = list(outvars) else: self._outvars = None
[docs] def is_constraint(self): # type: (...) -> bool """Check if the function is a constraint. The type of a constraint function is either 'eq' or 'ineq'. Returns: Whether the function is a constraint. """ return self.f_type in [self.TYPE_EQ, self.TYPE_INEQ]
def __repr__(self): # type: (...) -> str return self.special_repr or self.default_repr @property def default_repr(self): # type: (...) -> str """The default string representation of the function.""" str_repr = self.name if self.has_args(): arguments = ", ".join(self.args) str_repr += "({})".format(arguments) if self.has_expr(): str_repr += " = " expr = self.expr n_char = len(str_repr) # Remove empty lines with filter expr_spl = [_f for _f in expr.split("\n") if _f] str_repr += expr_spl[0] for repre in expr_spl[1:]: str_repr += "\n" + " " * n_char + repre return str_repr
[docs] def has_jac(self): # type: (...) -> bool """Check if the function has an implemented Jacobian function. Returns: Whether the function has an implemented Jacobian function. """ return self.jac is not None and not isinstance( self._jac, NotImplementedCallable )
[docs] def has_dim(self): # type: (...) -> bool """Check if the dimension of the output space of the function is defined. Returns: Whether the dimension of the output space of the function is defined. """ return self.dim is not None
[docs] def has_outvars(self): # type: (...) -> bool """Check if the outputs of the function have names. Returns: Whether the outputs of the function have names. """ return self.outvars is not None
[docs] def has_expr(self): # type: (...) -> bool """Check if the function has an expression. Returns: Whether the function has an expression. """ return self.expr is not None
[docs] def has_args(self): # type: (...) -> bool """Check if the inputs of the function have names. Returns: Whether the inputs of the function have names. """ return self.args is not None
[docs] def has_f_type(self): # type: (...) -> bool """Check if the function has a type. Returns: Whether the function has a type. """ return self.f_type is not None
def __add__( self, other_f # type: MDOFunction ): # type: (...) -> MDOFunction """Operator defining the sum of the function and another one. This operator supports automatic differentiation if both functions have an implemented Jacobian function. Args: other_f: The other function. Returns: The sum of the function and the other one. """ return ApplyOperator( other_f, operator=add, operator_repr="+", mdo_function=self ) def __sub__( self, other_f # type: MDOFunction ): # type: (...) -> MDOFunction """Operator defining the difference of the function and another one. This operator supports automatic differentiation if both functions have an implemented Jacobian function. Args: other_f: The other function. Returns: The difference of the function and the other one. """ return ApplyOperator( other_f, operator=subtract, operator_repr="-", mdo_function=self ) def _min_pt( self, x_vect # type: ndarray ): # type: (...) -> ndarray """Evaluate the function and return its opposite value. Args: x_vect: The value of the inputs of the function. Returns: The opposite of the value of the outputs of the function. """ return -self(x_vect) def _min_jac( self, x_vect # type: ndarray ): # type: (...) -> ndarray """Evaluate the Jacobian function and return its opposite value. Args: x_vect: The value of the inputs of the Jacobian function. Returns: The opposite of the value of the Jacobian function. """ return -self.jac(x_vect) # pylint: disable=E1102 def __neg__(self): # type: (...) -> MDOFunction """Operator defining the opposite of the function. This operator supports automatic differentiation if the function has an implemented Jacobian function. Returns: The opposite of the function. """ min_name = "-{}".format(self.name) min_self = MDOFunction( self._min_pt, min_name, args=self.args, f_type=self.f_type, dim=self.dim, outvars=self.outvars, ) if self.has_jac(): min_self.jac = self._min_jac if self.has_expr(): min_self.expr = self.expr min_self.expr = min_self.expr.replace("+", "++") min_self.expr = min_self.expr.replace("-", "+") min_self.expr = min_self.expr.replace("++", "-") min_self.expr = "-" + min_self.expr min_self.name = self.name min_self.name = min_self.name.replace("+", "++") min_self.name = min_self.name.replace("-", "+") min_self.name = min_self.name.replace("++", "-") min_self.name = "-" + min_self.name return min_self def __mul__(self, other): """Define the multiplication operation for MDOFunction. Supports automatic linearization if other and self have a Jacobian. Args: other: The function to multiply by. """ return MultiplyOperator(other, mdo_function=self) @staticmethod def _compute_operation_expression( operand_1, # type: str operator, # type: str operand_2, # type: Union[str,float,int] ): # type: (...)->str """Return the string expression of an operation between two operands. Args: operand_1: The first operand. operator: The operator applying to both operands. operand_2: The second operand. Returns: The string expression of the sum of the operands. """ return "{} {} {}".format(operand_1, operator, operand_2)
[docs] def offset( self, value # type: Union[ndarray, Number] ): # type: (...) -> MDOFunction """Add an offset value to the function. Args: value: The offset value. Returns: The offset function as an MDOFunction object. """ return Offset(value, self)
[docs] def restrict( self, frozen_indexes, # type: ndarray frozen_values, # type: ndarray input_dim, # type: int name=None, # type: Optional[str] f_type=None, # type: Optional[str] expr=None, # type: Optional[str] args=None, # type: Optional[Sequence[str]] ): # type: (...) -> MDOFunction r"""Return a restriction of the function :math:`\newcommand{\frozeninds}{I}\newcommand{\xfrozen}{\hat{x}}\newcommand{ \frestr}{\hat{f}}` For a subset :math:`\approxinds` of the variables indexes of a function :math:`f` to remain frozen at values :math:`\xfrozen_{i \in \frozeninds}` the restriction of :math:`f` is given by .. math:: \frestr: x_{i \not\in \approxinds} \longmapsto f(\xref_{i \in \approxinds}, x_{i \not\in \approxinds}). Args: frozen_indexes: The indexes of the inputs that will be frozen frozen_values: The values of the inputs that will be frozen. input_dim: The dimension of input space of the function before restriction. name: The name of the function after restriction. If None, create a default name based on the name of the current function and on the argument `args`. f_type: The type of the function after restriction. If None, the function will have no type. expr: The expression of the function after restriction. If None, the function will have no expression. args: The names of the inputs of the function after restriction. If None, the inputs of the function will have no names. Returns: The restriction of the function. """ return FunctionRestriction( frozen_indexes, frozen_values, input_dim, self, name, f_type, expr, args )
[docs] def linear_approximation( self, x_vect, # type: ndarray name=None, # type: Optional[str] f_type=None, # type: Optional[str] args=None, # type: Optional[Sequence[str]] ): # type: (...) -> MDOLinearFunction r"""Compute a first-order Taylor polynomial of the function. :math:`\newcommand{\xref}{\hat{x}}\newcommand{\dim}{d}` The first-order Taylor polynomial of a (possibly vector-valued) function :math:`f` at a point :math:`\xref` is defined as .. math:: \newcommand{\partialder}{\frac{\partial f}{\partial x_i}(\xref)} f(x) \approx f(\xref) + \sum_{i = 1}^{\dim} \partialder \, (x_i - \xref_i). Args: x_vect: The input vector at which to build the Taylor polynomial. name: The name of the linear approximation function. If None, create a name from the name of the function. f_type: The type of the linear approximation function. If None, the function will have no type. args: The names of the inputs of the linear approximation function, or a name base. If None, use the names of the inputs of the function. Returns: The first-order Taylor polynomial of the function at the input vector. Raises: AttributeError: If the function does not have a Jacobian function. """ # Check that the function Jacobian is available if not self.has_jac(): raise AttributeError( "Function Jacobian unavailable for linear approximation." ) # Build the first-order Taylor polynomial coefficients = self.jac(x_vect) func_val = self.__call__(x_vect) if isinstance(func_val, ndarray): # Make sure the function value is at most 1-dimensional func_val = func_val.flatten() value_at_zero = func_val - matmul(coefficients, x_vect) linear_approx_suffix = "_linearized" name = self.name + linear_approx_suffix if name is None else name args = args if args else self.args linear_approx = MDOLinearFunction( coefficients, name, f_type, args, value_at_zero ) return linear_approx
[docs] def convex_linear_approx( self, x_vect, # type: ndarray approx_indexes=None, # type: Optional[ndarray] sign_threshold=1e-9, # type: float ): # type: (...) -> MDOFunction r"""Compute a convex linearization of the function. :math:`\newcommand{\xref}{\hat{x}}\newcommand{\dim}{d}` The convex linearization of a function :math:`f` at a point :math:`\xref` is defined as .. math:: \newcommand{\partialder}{\frac{\partial f}{\partial x_i}(\xref)} f(x) \approx f(\xref) + \sum_{\substack{i = 1 \\ \partialder > 0}}^{\dim} \partialder \, (x_i - \xref_i) - \sum_{\substack{i = 1 \\ \partialder < 0}}^{\dim} \partialder \, \xref_i^2 \, \left(\frac{1}{x_i} - \frac{1}{\xref_i}\right). :math:`\newcommand{\approxinds}{I}` Optionally, one may require the convex linearization of :math:`f` with respect to a subset of its variables :math:`x_{i \in \approxinds}`, :math:`I \subset \{1, \dots, \dim\}`, rather than all of them: .. math:: f(x) = f(x_{i \in \approxinds}, x_{i \not\in \approxinds}) \approx f(\xref_{i \in \approxinds}, x_{i \not\in \approxinds}) + \sum_{\substack{i \in \approxinds \\ \partialder > 0}} \partialder \, (x_i - \xref_i) - \sum_{\substack{i \in \approxinds \\ \partialder < 0}} \partialder \, \xref_i^2 \, \left(\frac{1}{x_i} - \frac{1}{\xref_i}\right). Args: x_vect: The input vector at which to build the convex linearization. approx_indexes: A boolean mask specifying w.r.t. which inputs the function should be approximated. If None, consider all the inputs. sign_threshold: The threshold for the sign of the derivatives. Returns: The convex linearization of the function at the given input vector. """ return ConvexLinearApprox( x_vect, self, approx_indexes=approx_indexes, sign_threshold=sign_threshold )
[docs] def quadratic_approx( self, x_vect, # type: ndarray hessian_approx, # type: ndarray args=None, # type: Optional[Sequence[str]] ): # type: (...) ->MDOQuadraticFunction r"""Build a quadratic approximation of the function at a given point. The function must be scalar-valued. :math:`\newcommand{\xref}{\hat{x}}\newcommand{\dim}{d}\newcommand{ \hessapprox}{\hat{H}}` For a given approximation :math:`\hessapprox` of the Hessian matrix of a function :math:`f` at a point :math:`\xref`, the quadratic approximation of :math:`f` is defined as .. math:: \newcommand{\partialder}{\frac{\partial f}{\partial x_i}(\xref)} f(x) \approx f(\xref) + \sum_{i = 1}^{\dim} \partialder \, (x_i - \xref_i) + \frac{1}{2} \sum_{i = 1}^{\dim} \sum_{j = 1}^{\dim} \hessapprox_{ij} (x_i - \xref_i) (x_j - \xref_j). Args: x_vect: The input vector at which to build the quadratic approximation. hessian_approx: The approximation of the Hessian matrix at this input vector. args: The names of the inputs of the quadratic approximation function, or a name base. If None, use the ones of the current function. Returns: The second-order Taylor polynomial of the function at the given point. Raises: ValueError: Either if the approximated Hessian matrix is not square, or if it is not consistent with the dimension of the given point. AttributeError: If the function does not have an implemented Jacobian function. """ # Build the second-order coefficients if ( not isinstance(hessian_approx, ndarray) or hessian_approx.ndim != 2 or hessian_approx.shape[0] != hessian_approx.shape[1] ): raise ValueError("Hessian approximation must be a square ndarray.") if hessian_approx.shape[1] != x_vect.size: raise ValueError( "Hessian approximation and vector must have same dimension." ) quad_coeffs = 0.5 * hessian_approx # Build the first-order coefficients if not self.has_jac(): raise AttributeError("Jacobian unavailable.") gradient = self.jac(x_vect) hess_dot_vect = matmul(hessian_approx, x_vect) linear_coeffs = gradient - hess_dot_vect # Buid the zero-order coefficient zero_coeff = matmul(0.5 * hess_dot_vect - gradient, x_vect) + self.__call__( x_vect ) # Build the second-order Taylor polynomial quad_approx = MDOQuadraticFunction( quad_coeffs=quad_coeffs, linear_coeffs=linear_coeffs, value_at_zero=zero_coeff, name="{}_quadratized".format(self.name), args=args if args else self.args, ) return quad_approx
[docs] def check_grad( self, x_vect, # type: ndarray method="FirstOrderFD", # type: str step=1e-6, # type: float error_max=1e-8, # type: float ): # type: (...) -> None """Check the gradients of the function. Args: x_vect: The vector at which the function is checked. method: The method used to approximate the gradients, either "FirstOrderFD" or "ComplexStep". step: The step for the approximation of the gradients. error_max: The maximum value of the error. Raises: ValueError: Either if the approximation method is unknown, if the shapes of the analytical and approximated Jacobian matrices are inconsistent or if the analytical gradients are wrong. """ if method == "FirstOrderFD": apprx = FirstOrderFD(self, step) elif method == "ComplexStep": apprx = ComplexStep(self, step) else: raise ValueError( "Unknown approximation method {}," "use 'FirstOrderFD' or 'ComplexStep'.".format(method) ) apprx_grad = apprx.f_gradient(x_vect).real anal_grad = self._jac(x_vect).real if not apprx_grad.shape == anal_grad.shape: shape_app1d = len(apprx_grad.shape) == 1 or apprx_grad.shape[0] == 1 shape_ex1d = len(anal_grad.shape) == 1 or anal_grad.shape[0] == 1 shape_1d = shape_app1d and shape_ex1d flatten_diff = anal_grad.flatten().shape != apprx_grad.flatten().shape if not shape_1d or (shape_1d and flatten_diff): raise ValueError( "Inconsistent function jacobian shape; " "got: {} while expected: {}.".format( anal_grad.shape, apprx_grad.shape ) ) rel_error = self.rel_err(anal_grad, apprx_grad, error_max) succeed = rel_error < error_max if not succeed: LOGGER.error("Function jacobian is wrong %s", str(self)) LOGGER.error("Error =\n%s", str(self.filt_0(anal_grad - apprx_grad))) LOGGER.error("Analytic jacobian=\n%s", str(self.filt_0(anal_grad))) LOGGER.error("Approximate step gradient=\n%s", str(self.filt_0(apprx_grad))) raise ValueError("Function jacobian is wrong {}.".format(self))
[docs] @staticmethod def rel_err( a_vect, # type: ndarray b_vect, # type: ndarray error_max, # type: float ): # type: (...) -> float """Compute the 2-norm of the difference between two vectors. Normalize it with the 2-norm of the reference vector if the latter is greater than the maximal error. Args: a_vect: A first vector. b_vect: A second vector, used as a reference. error_max: The maximum value of the error. Returns: The difference between two vectors, normalized if required. """ n_b = norm(b_vect) if n_b > error_max: return norm(a_vect - b_vect) / norm(b_vect) return norm(a_vect - b_vect)
[docs] @staticmethod def filt_0( arr, # type: ndarray floor_value=1e-6, # type: float ): # type: (...) -> ndarray """Set the non-significant components of a vector to zero. The component of a vector is non-significant if its absolute value is lower than a threshold. Args: arr: The original vector. floor_value: The threshold. Returns: The original vector whose non-significant components have been set at zero. """ return where(np_abs(arr) < floor_value, 0.0, arr)
[docs] def get_data_dict_repr(self): # type: (...) -> Dict[str,Union[str,int,List[str]]] """Create a dictionary representation of the function. This is used for serialization. The pointers to the functions are removed. Returns: Some attributes of the function indexed by their names. See :attr:`DICT_REPR_ATTR` """ repr_dict = {} for attr_name in self.DICT_REPR_ATTR: attr = getattr(self, attr_name) if attr is not None: repr_dict[attr_name] = attr return repr_dict
[docs] @staticmethod def init_from_dict_repr(**kwargs): # type: (...) -> MDOFunction """Initialize a new function. This is typically used for deserialization. Args: **kwargs: The attributes from :attr:`DICT_REPR_ATTR`. Returns: A function initialized from the provided data. Raises: ValueError: If the name of an argument is not in :attr:`DICT_REPR_ATTR`. """ allowed = MDOFunction.DICT_REPR_ATTR for key in kwargs: if key not in allowed: raise ValueError( "Cannot initialize MDOFunction attribute: {}, " "allowed ones are: {}.".format(key, ", ".join(allowed)) ) return MDOFunction(func=None, **kwargs)
[docs] def set_pt_from_database( self, database, # type: Database design_space, # type: DesignSpace normalize=False, # type: bool jac=True, # type: bool x_tolerance=1e-10, # type: float ): # type: (...) -> None """Set the original function and Jacobian function from a database. For a given input vector, the method :meth:`func` will return either the output vector stored in the database if the input vector is present or `None`. The same for the method :meth:`jac`. Args: database: The database to read. design_space: The design space used for normalization. normalize: If True, the values of the inputs are unnormalized before call. jac: If True, a Jacobian pointer is also generated. x_tolerance: The tolerance on the distance between inputs. """ SetPtFromDatabase(database, design_space, self, normalize, jac, x_tolerance)
[docs] @staticmethod def generate_args( input_dim, # type: int args=None, # type: Optional[Sequence[str]] ): # type: (...) -> Sequence[str] """Generate the names of the inputs of the function. Args: input_dim: The dimension of the input space of the function. args: The initial names of the inputs of the function. If there is only one name, e.g. `["var"]`, use this name as a base name and generate the names of the inputs, e.g. `["var!0", "var!1", "var!2"]` if the dimension of the input space is equal to 3. If None, use `"x"` as a base name and generate the names of the inputs, i.e. `["x!0", "x!1", "x!2"]`. Returns: The names of the inputs of the function. """ if args and len(args) == input_dim: # Keep the passed list of strings new_args = args elif args and len(args) == 1: # Generate the arguments strings based on the unique passed string new_args = MDOFunction._generate_args(args[0], input_dim) else: # Generate the arguments strings based on the default string args_base = "x" new_args = MDOFunction._generate_args(args_base, input_dim) return new_args
@staticmethod def _generate_args( args_base, # type: str input_dim, # type: int ): # type: (...) -> List[str] """Generate the names of the inputs from a base name and their indices. Args: args_base: The base name. input_dim: The number of scalar inputs. Returns: The names of the inputs. """ index_prefix = MDOLinearFunction.INDEX_PREFIX return [args_base + index_prefix + str(i) for i in range(input_dim)]
[docs] @staticmethod def concatenate( functions, # type: Iterable[MDOFunction] name, # type: str f_type=None, # type: Optional[str] ): # type: (...) -> MDOFunction """Concatenate functions. Args: functions: The functions to be concatenated. name: The name of the concatenation function. f_type: The type of the concatenation function. If None, the function will have no type. Returns: The concatenation of the functions. """ return Concatenate(functions, name, f_type)
[docs]class NotImplementedCallable(object): """A not implemented callable object.""" def __call__(self, *args, **kwargs): # type: (...) -> NoReturn """ Raises: NotImplementedError: At each evaluation. """ raise NotImplementedError("Function is not implemented.")
[docs]class ApplyOperator(MDOFunction): """Define addition/subtraction for an MDOFunction. Supports automatic differentiation if other_f and self have a Jacobian. """ def __init__( self, other, # type: Union[MDOFunction, Number] operator, # type: MDOFunction operator_repr, # type: str mdo_function, # type: MDOFunction ): # type: (...) -> None """Apply an operator to the function and another function. This operator supports automatic differentiation if both functions have an implemented Jacobian function. Args: other: The other function or number. operator: The operator as a function pointer. operator_repr: The representation of the operator. mdo_function: The original function. Raises: TypeError: If `other` is not an MDOFunction or a Number. """ self.__other = other self.__operator = operator self.__operator_repr = operator_repr self.__mdo_function = mdo_function self.__is_number = isinstance(self.__other, Number) self.__is_func = isinstance(self.__other, MDOFunction) if not self.__is_number and not self.__is_func: raise TypeError( "Unsupported + operand for MDOFunction and {}.".format( type(self.__other) ) ) if self.__is_func: add_name = ( self.__mdo_function.name + self.__operator_repr + self.__other.name ) if self.__mdo_function.has_jac() and self.__other.has_jac(): jac = self._add_jac else: jac = None if self.__mdo_function.has_expr() and self.__other.has_expr(): expr = ( self.__mdo_function.expr + self.__operator_repr + self.__other.expr ) else: expr = None if self.__mdo_function.has_args() and self.__other.has_args(): args = sorted(list(set(self.__mdo_function.args + self.__other.args))) else: args = None if self.__mdo_function.has_f_type(): f_type = self.__mdo_function.f_type elif self.__other.has_f_type(): f_type = self.__other.f_type else: f_type = None super(ApplyOperator, self).__init__( self._add_f_pt, add_name, jac=jac, expr=expr, args=args, f_type=f_type, dim=self.__mdo_function.dim, outvars=self.__mdo_function.outvars, ) elif self.__is_number: add_name = ( self.__mdo_function.name + self.__operator_repr + str(self.__other) ) if self.__mdo_function.has_expr(): expr = ( self.__mdo_function.expr + self.__operator_repr + str(self.__other) ) else: expr = None super(ApplyOperator, self).__init__( self._add_f_pt, add_name, jac=self.__mdo_function.jac, expr=expr, args=self.__mdo_function.args, f_type=self.__mdo_function.f_type, dim=self.__mdo_function.dim, outvars=self.__mdo_function.outvars, ) def _add_f_pt( self, x_vect # type: ndarray ): # type: (...) -> MDOFunction """Evaluate the function and apply the operator to the value of its outputs. Args: x_vect: The values of the inputs of the function. Returns: The value of the outputs of the function modified by the operator. """ if self.__is_number: selfval = self.__mdo_function(x_vect) return self.__operator(selfval, self.__other) if self.__is_func: selfval = self.__mdo_function(x_vect) otherval = self.__other(x_vect) return self.__operator(selfval, otherval) def _add_jac( self, x_vect # type: ndarray ): # type: (...) -> MDOFunction """Define the Jacobian of the addition function. Args: x_vect: The design variables values. Returns: The Jacobian of self(x_vect) added to the Jacbian of other(x_vect). """ self_jac = self.__mdo_function._jac(x_vect) other_jac = self.__other.jac(x_vect) return self.__operator(self_jac, other_jac)
[docs]class Concatenate(MDOFunction): """Wrap the concatenation of a set of functions.""" def __init__( self, functions, # type: Iterable[MDOFunction] name, # type: str f_type=None, # type: Optional[str] ): """ Args: functions: The functions to be concatenated. name: The name of the concatenation function. f_type: The type of the concatenation function. If None, the function will have no type. """ self.__functions = functions self.__name = name self.__f_type = f_type dim = sum([func.dim for func in self.__functions]) outvars_list = [func.outvars for func in self.__functions] if None in outvars_list: outvars = None else: outvars = [out_var for outvars in outvars_list for out_var in outvars] super(Concatenate, self).__init__( self._concat_func, self.__name, self.__f_type, self._concat_jac, dim=dim, outvars=outvars, ) def _concat_func( self, x_vect, # type: ndarray ): # type: (...) -> ndarray """Concatenate the values of the outputs of the functions. Args: x_vect: The value of the inputs of the functions. Returns: The concatenation of the values of the outputs of the functions. """ return concatenate([atleast_1d(func(x_vect)) for func in self.__functions]) def _concat_jac( self, x_vect, # type: ndarray ): # type: (...) -> ndarray """Concatenate the outputs of the Jacobian functions. Args: x_vect: The value of the inputs of the Jacobian functions. Returns: The concatenation of the outputs of the Jacobian functions. """ return vstack([atleast_2d(func.jac(x_vect)) for func in self.__functions])
[docs]class MultiplyOperator(MDOFunction): """Wrap the multiplication of an MDOFunction. Supports automatic differentiation if other_f and self have a Jacobian. """ def __init__( self, other, # type: Union[MDOFunction, Number] mdo_function, # type: MDOFunction ): # type: (...) -> None """Operator defining the multiplication of the function and another operand. This operator supports automatic differentiation if the different functions have an implemented Jacobian function. Args: other: The other operand. mdo_function: The original function. Raises: TypeError: If the other operand is neither a number nor a :class:`MDOFunction`. """ self.__other = other self.__mdo_function = mdo_function self.__is_number = isinstance(self.__other, Number) self.__is_func = isinstance(self.__other, MDOFunction) if not self.__is_number and not self.__is_func: raise TypeError( "Unsupported * operand for MDOFunction and {}.".format( type(self.__other) ) ) if self.__is_func: out_name = "{}*{}".format(self.__mdo_function.name, self.__other.name) if self.__mdo_function.has_expr() and self.__other.has_expr(): expr = "({})*({})".format(self.__mdo_function.expr, self.__other.expr) else: expr = None if self.__mdo_function.has_args() and self.__other.has_args(): args = sorted(list(set(self.__mdo_function.args + self.__other.args))) else: args = None if self.__mdo_function.has_f_type(): f_type = self.__mdo_function.f_type elif self.__other.has_f_type(): f_type = self.__other.f_type else: f_type = None elif self.__is_number: out_name = "{}*{}".format(self.__mdo_function.name, self.__other) args = self.__mdo_function.args f_type = self.__mdo_function.f_type if self.__mdo_function.has_expr(): expr = "({})*{}".format(self.__mdo_function.expr, self.__other) else: expr = None super(MultiplyOperator, self).__init__( self._mul_f_pt, out_name, expr=expr, jac=self._mult_jac, args=args, f_type=f_type, dim=self.__mdo_function.dim, outvars=self.__mdo_function.outvars, ) def _mul_f_pt( self, x_vect # type: ndarray ): # type: (...) -> ndarray """Evaluate the function and multiply its output value. Args: x_vect: The value of the inputs of the function. Returns: The product of the output value of the function with the number. """ if self.__is_func: mul_f = self.__mdo_function(x_vect) * self.__other(x_vect) elif self.__is_number: mul_f = self.__mdo_function(x_vect) * self.__other return mul_f def _mult_jac( self, x_vect # type: ndarray ): # type: (...) -> ndarray """Evaluate both functions and multiply their output values. Args: x_vect: The value of the inputs of the function. Returns: The product of the output values of the functions. """ if self.__mdo_function.has_jac() and self.__is_number: mult_jac = self.__mdo_function._jac(x_vect) * self.__other elif self.__mdo_function.has_jac() and self.__other.has_jac(): self_f = self.__mdo_function(x_vect) other_f = self.__other(x_vect) self_jac = self.__mdo_function._jac(x_vect) other_jac = self.__other.jac(x_vect) mult_jac = self_jac * other_f + other_jac * self_f else: mult_jac = None return mult_jac
[docs]class Offset(MDOFunction): """Wrap an MDOFunction plus an offset value.""" def __init__( self, value, # type: Union[ndarray, Number] mdo_function, # type: MDOFunction ): # type: (...) -> None """ Args: value: The offset value. mdo_function: The original MDOFunction object. """ name = mdo_function.name self.__value = value self.__mdo_function = mdo_function expr = self.__mdo_function.expr if expr is None: expr = name if isinstance(value, Sized): operator = "+" operand_2 = "offset" else: if value < 0: operator = "-" operand_2 = -value else: operator = "+" operand_2 = value name = self.__mdo_function._compute_operation_expression( name, operator, operand_2 ) expr = self.__mdo_function._compute_operation_expression( expr, operator, operand_2 ) super(Offset, self).__init__( self._wrapped_function, name=name, f_type=self.__mdo_function.f_type, expr=expr, args=self.__mdo_function.args, dim=self.__mdo_function.dim, jac=self.__mdo_function.jac, outvars=self.__mdo_function.outvars, ) def _wrapped_function( self, x_vect # type: ndarray ): # type: (...) -> ndarray """Wrap the function to be given to the optimizer. Args: x_vect: The design variables values. Returns: The evaluation of function at design variables plus the offset. """ return self.__mdo_function(x_vect) + self.__value
[docs]class FunctionRestriction(MDOFunction): """Take an :class:`.MDOFunction` and apply a given restriction to its inputs.""" def __init__( self, frozen_indexes, # type: ndarray frozen_values, # type: ndarray input_dim, # type: int mdo_function, # type: MDOFunction name=None, # type: Optional[str] f_type=None, # type: Optional[str] expr=None, # type: Optional[str] args=None, # type: Optional[Sequence[str]] ): # type: (...) -> None """ Args: frozen_indexes: The indexes of the inputs that will be frozen frozen_values: The values of the inputs that will be frozen. input_dim: The dimension of input space of the function before restriction. name: The name of the function after restriction. If None, create a default name based on the name of the current function and on the argument `args`. mdo_function: The function to restrict. f_type: The type of the function after restriction. If None, the function will have no type. expr: The expression of the function after restriction. If None, the function will have no expression. args: The names of the inputs of the function after restriction. If None, the inputs of the function will have no names. Raises: ValueError: If the `frozen_indexes` and the `frozen_values` arrays do not have the same shape. """ # Check the shapes of the passed arrays if frozen_indexes.shape != frozen_values.shape: raise ValueError("Arrays of frozen indexes and values must have same shape") self.__frozen_indexes = frozen_indexes self.__frozen_values = frozen_values self.__input_dim = input_dim self.__mdo_function = mdo_function self.__name = name self.__f_type = f_type self.__expr = expr self.__args = args self._active_indexes = array( [i for i in range(self.__input_dim) if i not in self.__frozen_indexes] ) # Build the name of the restriction if self.__name is None and self.__args is not None: self.__name = "{}_wrt_{}".format( self.__mdo_function.name, "_".join(self.__args) ) elif name is None: self.__name = "{}_restriction".format(self.__mdo_function.name) if self.__mdo_function.has_jac(): jac = self._jac else: jac = self.__mdo_function.jac super(FunctionRestriction, self).__init__( self._func, self.__name, self.__f_type, expr=self.__expr, args=self.__args, jac=jac, dim=self.__mdo_function.dim, outvars=self.__mdo_function.outvars, force_real=self.__mdo_function.force_real, ) def __extend_subvect( self, x_subvect # type: ndarray ): # type: (...) -> ndarray """Extend an input vector of the restriction with the frozen values. Args: x_subvect: The values of the inputs of the restriction. Returns: The extended input vector. """ x_vect = empty(self.__input_dim) x_vect[self._active_indexes] = x_subvect x_vect[self.__frozen_indexes] = self.__frozen_values return x_vect def _func( self, x_subvect # type: ndarray ): # type: (...) -> ndarray """Evaluate the restriction. Args: x_subvect: The value of the inputs of the restriction. Returns: The value of the outputs of the restriction. """ x_vect = self.__extend_subvect(x_subvect) value = self.__mdo_function.__call__(x_vect) return value def _jac( self, x_subvect # type: ndarray ): # type: (...) -> ndarray """Compute the Jacobian matrix of the restriction. Args: x_subvect: The value of the inputs of the restriction. Returns: The Jacobian matrix of the restriction. """ x_vect = self.__extend_subvect(x_subvect) full_jac = self.__mdo_function.jac(x_vect) if len(full_jac.shape) == 1: sub_jac = full_jac[self._active_indexes] else: sub_jac = full_jac[:, self._active_indexes] return sub_jac
[docs]class MDOLinearFunction(MDOFunction): r"""Linear multivariate function defined by * a matrix :math:`A` of first-order coefficients :math:`(a_{ij})_{\substack{i = 1, \dots m \\ j = 1, \dots n}}` * and a vector :math:`b` of zero-order coefficients :math:`(b_i)_{i = 1, \dots m}` .. math:: F(x) = Ax + b = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}. """ def __init__( self, coefficients, # type: ndarray name, # type: str f_type=None, # type: Optional[str] args=None, # type: Optional[Sequence[str]] value_at_zero=0.0, # type: Union[ndarray,Number] ): """ Args: coefficients: The coefficients :math:`A` of the linear function. name: The name of the linear function. f_type: The type of the linear function among :attr:`AVAILABLE_TYPES`. If None, the linear function will have no type. args: The names of the inputs of the linear function. If None, the inputs of the linear function will have no names. value_at_zero: The value :math:`b` of the linear function output at zero. """ # Format the passed coefficients and value at zero self.coefficients = coefficients output_dim, input_dim = self._coefficients.shape self.value_at_zero = value_at_zero # Generate the arguments strings new_args = MDOLinearFunction.generate_args(input_dim, args) # Generate the expression string if output_dim == 1: expr = self._generate_1d_expr(new_args) else: expr = self._generate_nd_expr(new_args) super(MDOLinearFunction, self).__init__( self.__fun, name, f_type=f_type, jac=self.__jac, expr=expr, args=new_args, dim=output_dim, outvars=[name], ) def __fun( self, x_vect # type: ndarray ): # type: (...) -> ndarray """Return the linear combination with an offset: sum_{i=1}^n a_i * x_i + b Args: x_vect: The design variables values. """ value = matmul(self._coefficients, x_vect) + self._value_at_zero if value.size == 1: value = value[0] return value def __jac(self, _): """.. note:: If the function is scalar, the gradient of the function is returned as a 1d-array. If the function is vectorial, the Jacobian of the function is returned as a 2d-array. """ if self._coefficients.shape[0] == 1: jac = self._coefficients[0, :] else: jac = self._coefficients return jac @property def coefficients(self): # type: (...) -> ndarray """The coefficients of the linear function. This is the matrix :math:`A` in the expression :math:`y=Ax+b`. Raises: ValueError: If the coefficients are not passed as a 1-dimensional or 2-dimensional ndarray. """ return self._coefficients @coefficients.setter def coefficients( self, coefficients, # type: Union[Number,ndarray] ): # type: (...) -> None if isinstance(coefficients, Number): self._coefficients = atleast_2d(coefficients) elif isinstance(coefficients, ndarray) and len(coefficients.shape) == 2: self._coefficients = coefficients elif isinstance(coefficients, ndarray) and len(coefficients.shape) == 1: self._coefficients = coefficients.reshape([1, -1]) else: raise ValueError( "Coefficients must be passed as a 2-dimensional " "or a 1-dimensional ndarray." ) @property def value_at_zero(self): # type: (...) -> ndarray """The value of the function at zero. This is the vector :math:`b` in the expression :math:`y=Ax+b`. Raises: ValueError: If the value at zero is neither an ndarray nor a number. """ return self._value_at_zero @value_at_zero.setter def value_at_zero( self, value_at_zero, # type: Union[Number,ndarray] ): # type: (...) -> None output_dim = self.coefficients.shape[0] # N.B. the coefficients must be set if isinstance(value_at_zero, ndarray) and value_at_zero.size == output_dim: self._value_at_zero = value_at_zero.reshape(output_dim) elif isinstance(value_at_zero, Number): self._value_at_zero = array([value_at_zero] * output_dim) else: raise ValueError("Value at zero must be an ndarray or a number.") def _generate_1d_expr( self, args, # type: Sequence[str] ): # type: (...)-> str """Generate the literal expression of the linear function in scalar form. Args: args: The names of the inputs of the function. Returns: The literal expression of the linear function in scalar form. """ expr = "" # Build the expression of the linear combination first_non_zero = -1 for i, coeff in enumerate(self._coefficients[0, :]): if coeff != 0.0: if first_non_zero == -1: first_non_zero = i # Add the monomial sign if i == first_non_zero and coeff < 0.0: # The first nonzero coefficient is negative. expr += "-" # unary minus elif i != first_non_zero and coeff < 0.0: expr += " - " elif i != first_non_zero and coeff > 0.0: expr += " + " # Add the coefficient value if abs(coeff) != 1.0: expr += MDOFunction.COEFF_FORMAT_1D.format(abs(coeff)) + "*" # Add argument string expr += args[i] # Add the offset expression value_at_zero = self._value_at_zero[0] if first_non_zero == -1: # Constant function expr += MDOFunction.COEFF_FORMAT_1D.format(value_at_zero) elif self._value_at_zero > 0.0: expr += " + " + MDOFunction.COEFF_FORMAT_1D.format(value_at_zero) elif self._value_at_zero < 0.0: expr += " - " + MDOFunction.COEFF_FORMAT_1D.format(-value_at_zero) return expr def _generate_nd_expr( self, args, # type: Sequence[str] ): # type: (...)-> str """Generate the literal expression of the linear function in matrix form. Args: args: The names of the inputs of the function. Returns: The literal expression of the linear function in matrix form. """ max_args_len = max([len(arg) for arg in args]) out_dim, in_dim = self._coefficients.shape expr = "" for i in range(max(out_dim, in_dim)): if i > 0: expr += "\n" # matrix line if i < out_dim: line_coeffs_str = ( MDOFunction.COEFF_FORMAT_ND.format(coeff) for coeff in self._coefficients[i, :] ) expr += "[{}]".format(" ".join(line_coeffs_str)) else: expr += " " + " ".join([" " * 3] * in_dim) + " " # vector line if i < in_dim: expr += "[{}]".format(args[i]) else: expr += " " * (max_args_len + 2) # sign if i == 0: expr += " + " else: expr += " " # value at zero if i < out_dim: expr += "[{}]".format( MDOFunction.COEFF_FORMAT_ND.format(self._value_at_zero[i]) ) return expr def __neg__(self): # type: (...) -> MDOLinearFunction return MDOLinearFunction( -self._coefficients, "-" + self.name, self.f_type, self.args, -self._value_at_zero, )
[docs] def offset( self, value, # type: Union[Number,ndarray] ): # type: (...) -> MDOLinearFunction return MDOLinearFunction( self._coefficients, self.name, self.f_type, self.args, self._value_at_zero + value, )
[docs] def restrict( self, frozen_indexes, # type: ndarray frozen_values, # type: ndarray ): # type: (...) -> MDOLinearFunction """Build a restriction of the linear function. Args: frozen_indexes: The indexes of the inputs that will be frozen. frozen_values: The values of the inputs that will be frozen. Returns: The restriction of the linear function. Raises: ValueError: If the frozen indexes and values have different shapes. """ # Check the shapes of the passed arrays if frozen_indexes.shape != frozen_values.shape: raise ValueError( "Arrays of frozen indexes and values must have same shape." ) # Separate the frozen coefficients from the active ones frozen_coefficients = self.coefficients[:, frozen_indexes] active_indexes = array( [i for i in range(self.coefficients.shape[1]) if i not in frozen_indexes] ) active_coefficients = self.coefficients[:, active_indexes] # Compute the restriction value at zero value_at_zero = matmul(frozen_coefficients, frozen_values) + self._value_at_zero # Build the function restriction restriction_suffix = "_restriction" name = self.name + restriction_suffix args = [self.args[i] for i in active_indexes] restriction = MDOLinearFunction( active_coefficients, name, args=args, value_at_zero=value_at_zero ) return restriction
[docs]class ConvexLinearApprox(MDOFunction): """Wrap a convex linearization of the function.""" def __init__( self, x_vect, # type: ndarray mdo_function, # type: MDOFunction approx_indexes=None, # type: Optional[ndarray] sign_threshold=1e-9, # type: float ): # type: (...) -> MDOFunction """ Args: x_vect: The input vector at which to build the convex linearization. mdo_function: The function to approximate. approx_indexes: A boolean mask specifying w.r.t. which inputs the function should be approximated. If None, consider all the inputs. sign_threshold: The threshold for the sign of the derivatives. Raises: ValueError: If the length of boolean array and the number of inputs of the functions are inconsistent. AttributeError: If the function does not have a Jacobian function. """ self.__x_vect = x_vect self.__mdo_function = mdo_function self.__approx_indexes = approx_indexes self.__sign_threshold = sign_threshold # Check the approximation indexes if self.__approx_indexes is None: self.__approx_indexes = ones_like(x_vect, dtype=bool) elif ( self.__approx_indexes.shape != self.__x_vect.shape or self.__approx_indexes.dtype != "bool" ): raise ValueError( "The approximation array must be an array of booleans with " "the same shape as the function argument." ) # Get the function Jacobian matrix if not self.__mdo_function.has_jac(): raise AttributeError( "Function Jacobian unavailable for convex linearization." ) jac = atleast_2d(self.__mdo_function.jac(x_vect)) # Build the coefficients matrices coeffs = jac[:, self.__approx_indexes] self.__direct_coeffs = where(coeffs > self.__sign_threshold, coeffs, 0.0) self.__recipr_coeffs = multiply( -where(-coeffs > self.__sign_threshold, coeffs, 0.0), self.__x_vect[self.__approx_indexes] ** 2, ) super(ConvexLinearApprox, self).__init__( self._convex_lin_func, "{}_convex_lin".format(self.__mdo_function.name), self.__mdo_function.f_type, self._convex_lin_jac, args=None, dim=self.__mdo_function.dim, outvars=self.__mdo_function.outvars, force_real=self.__mdo_function.force_real, ) def __get_steps( self, x_new, # type: ndarray ): # type: (...) -> Tuple[ndarray,ndarray] """Return the steps on the direct and reciprocal variables. Args: x_new: The value of the inputs of the convex linearization function. Returns: Both the step on the direct variables and the step on the reciprocal variables. """ step = x_new[self.__approx_indexes] - self.__x_vect[self.__approx_indexes] inv_step = zeros_like(step) nonzero_indexes = (absolute(step) > self.__sign_threshold).nonzero() inv_step[nonzero_indexes] = 1.0 / step[nonzero_indexes] return step, inv_step def _convex_lin_func( self, x_new, # type: ndarray ): # type: (...) -> ndarray """Return the value of the convex linearization function. Args: x_new: The value of the inputs of the convex linearization function. Returns: The value of the outputs of the convex linearization function. """ merged_vect = where(self.__approx_indexes, self.__x_vect, x_new) step, inv_step = self.__get_steps(x_new) value = ( self.__mdo_function.__call__(merged_vect) + matmul(self.__direct_coeffs, step) + matmul(self.__recipr_coeffs, inv_step) ) if self.__mdo_function._dim == 1: return value[0] return value def _convex_lin_jac( self, x_new, # type: ndarray ): # type: (...) -> ndarray """Return the Jacobian matrix of the convex linearization function. Args: x_new: The value of the inputs of the convex linearization function. Returns: The Jacobian matrix of the convex linearization function. """ merged_vect = where(self.__approx_indexes, self.__x_vect, x_new) value = atleast_2d(self.__mdo_function.jac(merged_vect)) _, inv_step = self.__get_steps(x_new) value[:, self.__approx_indexes] = self.__direct_coeffs + multiply( self.__recipr_coeffs, -(inv_step ** 2) ) if self.__mdo_function._dim == 1: value = value[0, :] return value
[docs]class MDOQuadraticFunction(MDOFunction): r"""Scalar-valued quadratic multivariate function defined by * a *square* matrix :math:`A` of second-order coefficients :math:`(a_{ij})_{\substack{i = 1, \dots n \\ j = 1, \dots n}}` * a vector :math:`b` of first-order coefficients :math:`(b_i)_{i = 1, \dots n}` * and a scalar zero-order coefficient :math:`c` .. math:: f(x) = c + \sum_{i = 1}^n b_i \, x_i + \sum_{i = 1}^n \sum_{j = 1}^n a_{ij} \, x_i \, x_j. """ def __init__( self, quad_coeffs, # type: ndarray name, # type: str f_type=None, # type: Optional[str] args=None, # type: Sequence[str] linear_coeffs=None, # type: Optional[ndarray] value_at_zero=None, # type: Optional[float] ): """ Args: quad_coeffs: The second-order coefficients. name: The name of the function. f_type: The type of the linear function among :attr:`AVAILABLE_TYPES`. If None, the linear function will have no type. args: The names of the inputs of the linear function. If None, the inputs of the linear function will have no names. linear_coeffs: The first-order coefficients. If None, the first-order coefficients will be zero. value_at_zero: The zero-order coefficient. If None, the value at zero will be zero. """ self._input_dim = 0 self._quad_coeffs = None self._linear_coeffs = None self.quad_coeffs = quad_coeffs # sets the input dimension new_args = MDOFunction.generate_args(self._input_dim, args) # Build the first-order term if linear_coeffs is not None: self._linear_part = MDOLinearFunction( linear_coeffs, "{}_lin".format(name), args=new_args ) self.linear_coeffs = self._linear_part.coefficients self._value_at_zero = value_at_zero # Build the second-order term expr = self.build_expression( self._quad_coeffs, new_args, self._linear_coeffs, self._value_at_zero ) super(MDOQuadraticFunction, self).__init__( self.__func, name, f_type, self.__grad, expr, args=new_args, dim=1 ) def __func( self, x_vect # type: ndarray ): # type: (...) -> ndarray """Compute the output of the quadratic function. Args: x_vect: The value of the inputs of the quadratic function. Returns: The value of the quadratic function. """ value = multi_dot((x_vect.T, self._quad_coeffs, x_vect)) if self._linear_coeffs is not None: value += self._linear_part(x_vect) if self._value_at_zero is not None: value += self._value_at_zero return value def __grad( self, x_vect # type: ndarray ): # type: (...) -> ndarray """Compute the gradient of the quadratic function. Args: x_vect: The value of the inputs of the quadratic function. Returns: The value of the gradient of the quadratic function. """ gradient = matmul(self._quad_coeffs + self._quad_coeffs.T, x_vect) if self._linear_coeffs is not None: gradient += self._linear_part.jac(x_vect) return gradient @property def quad_coeffs(self): # type: (...) -> ndarray """The second-order coefficients of the function. Raises: ValueError: If the coefficients are not passed as a 2-dimensional square ``ndarray``. """ return self._quad_coeffs @quad_coeffs.setter def quad_coeffs( self, coefficients, # type: ndarray ): # type: (...) -> None # Check the second-order coefficients if ( not isinstance(coefficients, ndarray) or len(coefficients.shape) != 2 or coefficients.shape[0] != coefficients.shape[1] ): raise ValueError( "Quadratic coefficients must be passed as a 2-dimensional " "square ndarray." ) self._quad_coeffs = coefficients self._input_dim = self._quad_coeffs.shape[0] @property def linear_coeffs(self): # type: (...) -> ndarray """The first-order coefficients of the function. Raises: ValueError: If the number of first-order coefficients is not consistent with the dimension of the input space. """ if self._linear_coeffs is None: return zeros(self._input_dim) return self._linear_coeffs @linear_coeffs.setter def linear_coeffs( self, coefficients, # type: ndarray ): # type: (...) -> None if coefficients.size != self._input_dim: raise ValueError( "The number of first-order coefficients must be equal " "to the input dimension." ) self._linear_coeffs = coefficients
[docs] @staticmethod def build_expression( quad_coeffs, # type: ndarray args, # type: Sequence[str] linear_coeffs=None, # type: Optional[linear_coeffs] value_at_zero=None, # type: Optional[float] ): """Build the expression of the quadratic function. Args: quad_coeffs: The second-order coefficients. args: The names of the inputs of the function. linear_coeffs: The first-order coefficients. If None, the first-order coefficients will be zero. value_at_zero: The zero-order coefficient. If None, the value at zero will be zero. Returns: The expression of the quadratic function. """ transpose_str = "'" expr = "" for index, line in enumerate(quad_coeffs.tolist()): arg = args[index] # Second-order expression line = quad_coeffs[index, :].tolist() expr += "[{}]".format(arg) expr += transpose_str if index == 0 else " " quad_coeffs_str = (MDOFunction.COEFF_FORMAT_ND.format(val) for val in line) expr += "[{}]".format(" ".join(quad_coeffs_str)) expr += "[{}]".format(arg) # First-order expression if ( linear_coeffs is not None and (linear_coeffs != zeros_like(linear_coeffs)).any() ): expr += " + " if index == 0 else " " expr += "[{}]".format( MDOFunction.COEFF_FORMAT_ND.format(linear_coeffs[0, index]) ) expr += transpose_str if index == 0 else " " expr += "[{}]".format(arg) # Zero-order expression if value_at_zero is not None and value_at_zero != 0.0 and index == 0: sign_str = "+" if value_at_zero > 0.0 else "-" expr += (" {} " + MDOFunction.COEFF_FORMAT_ND).format( sign_str, abs(value_at_zero) ) if index < quad_coeffs.shape[0] - 1: expr += "\n" return expr
[docs]class SetPtFromDatabase(MDOFunction): """Set a function and Jacobian from a database.""" def __init__( self, database, # type: Database design_space, # type: DesignSpace mdo_function, # type: MDOFunction normalize=False, # type: bool jac=True, # type: bool x_tolerance=1e-10, # type: float ): """ Args: database: The database to read. design_space: The design space used for normalization. mdo_function: The function where the data from the database will be set. normalize: If True, the values of the inputs are unnormalized before call. jac: If True, a Jacobian pointer is also generated. x_tolerance: The tolerance on the distance between inputs. """ self.__database = database self.__design_space = design_space self.__mdo_function = mdo_function self.__normalize = normalize self.__jac = jac self.__x_tolerance = x_tolerance self.__name = self.__mdo_function.name self.__mdo_function.func = self._f_from_db if jac: self.__mdo_function.jac = self._j_from_db def __read_in_db( self, x_n, # type: ndarray fname, # type: str ): # type: (...) -> ndarray """Read the value of a function in the database for a given input value. Args: x_n: The value of the inputs to evaluate the function. fname: The name of the function. Returns: The value of the function if present in the database. Raises: ValueError: If the input value is not in the database. """ if self.__normalize: x_db = self.__design_space.unnormalize_vect(x_n) else: x_db = x_n val = self.__database.get_f_of_x(fname, x_db, self.__x_tolerance) if val is None: msg = ( "Function {} evaluation relies only on the database, " "and {}( x ) is not in the database for x={}." ).format(fname, fname, x_db) raise ValueError(msg) return val def _f_from_db( self, x_n, # type: ndarray ): # type: (...) -> ndarray """Evaluate the function from the database. Args: x_n: The value of the inputs to evaluate the function. Returns: The value of the function read in the database. """ return self.__read_in_db(x_n, self.__name) def _j_from_db( self, x_n, # type: ndarray ): # type: (...) -> ndarray """Evaluate the Jacobian function from the database. Args: x_n: The value of the inputs to evaluate the Jacobian function. Returns: The value of the Jacobian function read in the database. """ return self.__read_in_db(x_n, "@{}".format(self.__name))