Source code for gemseo.core.mdofunctions.norm_db_function
# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - API and implementation and/or documentation
# :author: Francois Gallard
# OTHER AUTHORS - MACROSCOPIC CHANGES
# :author: Benoit Pauwels - Stacked data management
# (e.g. iteration index)
# :author: Gilberto Ruiz Jimenez
"""An MDOFunction subclass to support formulations."""
from __future__ import division, unicode_literals
import logging
from typing import TYPE_CHECKING
from numpy import any as np_any
from numpy import isnan as np_isnan
from numpy import ndarray
from gemseo.algos.database import Database
from gemseo.algos.stop_criteria import (
DesvarIsNan,
FunctionIsNan,
MaxIterReachedException,
)
from gemseo.core.mdofunctions.mdo_function import MDOFunction
if TYPE_CHECKING:
from gemseo.algos.opt_problem import OptimizationProblem
LOGGER = logging.getLogger(__name__)
[docs]class NormDBFunction(MDOFunction):
"""An :class:`.MDOFunction` object to be evaluated from a database."""
def __init__(
self,
orig_func, # type: MDOFunction
normalize, # type: bool
is_observable, # type: bool
optimization_problem, # type: OptimizationProblem
): # type: (...) -> None
"""
Args:
orig_func: The original function to be wrapped.
normalize: If True, then normalize the function's input vector.
is_observable: If True, new_iter_listeners are not called
when function is called (avoid recursive call).
optimization_problem: The optimization problem object that contains
the function.
"""
self.__normalize = normalize
self.__orig_func = orig_func
self.__is_observable = is_observable
self.__optimization_problem = optimization_problem
super(NormDBFunction, self).__init__(
self._func,
orig_func.name,
jac=self._jac,
f_type=orig_func.f_type,
expr=orig_func.expr,
args=orig_func.args,
dim=orig_func.dim,
outvars=orig_func.outvars,
)
def _func(
self,
x_vect, # type: ndarray
): # type: (...) -> ndarray
"""Compute the function to be passed to the optimizer.
Args:
x_vect: The value of the design variables.
Returns:
The evaluation of the function for this value of the design variables.
Raises:
DesvarIsNan: If the design variables contain a NaN value.
FunctionIsNan: If a function returns a NaN value when evaluated.
MaxIterReachedException: If the maximum number of iterations has been
reached.
"""
if np_any(np_isnan(x_vect)):
raise DesvarIsNan("Design Variables contain a NaN value: {}".format(x_vect))
if self.__normalize:
xn_vect = x_vect
xu_vect = self.__optimization_problem.design_space.unnormalize_vect(xn_vect)
else:
xu_vect = x_vect
xn_vect = self.__optimization_problem.design_space.normalize_vect(xu_vect)
# try to retrieve the evaluation
value = self.__optimization_problem.database.get_f_of_x(
self.__orig_func.name, xu_vect
)
if value is None:
new_eval = self.__optimization_problem.database.is_new_eval(xu_vect)
if new_eval and self.__optimization_problem.is_max_iter_reached():
raise MaxIterReachedException()
# if not evaluated yet, evaluate
if self.__normalize:
value = self.__orig_func(xn_vect)
else:
value = self.__orig_func(xu_vect)
if self.__optimization_problem.stop_if_nan and np_any(np_isnan(value)):
raise FunctionIsNan(
"The function {} is NaN for x={}".format(
self.__orig_func.name, xu_vect
)
)
func_name_to_value = {self.__orig_func.name: value}
# store (x, f(x)) in database
self.__optimization_problem.database.store(xu_vect, func_name_to_value)
return value
def _jac(
self, x_vect # type: ndarray
): # type: (...) -> ndarray
"""Compute the gradient of the function to be passed to the optimizer.
Args:
x_vect: The value of the design variables.
Returns:
The evaluation of the gradient for this value of the design variables.
Raises:
FunctionIsNan: If the design variables contain a NaN value.
If the evaluation of the jacobian results in a NaN value.
"""
if np_any(np_isnan(x_vect)):
raise FunctionIsNan(
"Design Variables contain a NaN value: {}".format(x_vect)
)
if self.__normalize:
xn_vect = x_vect
xu_vect = self.__optimization_problem.design_space.unnormalize_vect(xn_vect)
else:
xu_vect = x_vect
xn_vect = self.__optimization_problem.design_space.normalize_vect(xu_vect)
# try to retrieve the evaluation
jac_u = self.__optimization_problem.database.get_f_of_x(
Database.get_gradient_name(self.__orig_func.name), xu_vect
)
if jac_u is None:
new_eval = self.__optimization_problem.database.is_new_eval(xu_vect)
if new_eval and self.__optimization_problem.is_max_iter_reached():
raise MaxIterReachedException()
# if not evaluated yet, evaluate
if self.__normalize:
jac_n = self.__orig_func.jac(xn_vect).real
jac_u = self.__optimization_problem.design_space.unnormalize_grad(jac_n)
else:
jac_u = self.__orig_func.jac(xu_vect).real
jac_n = self.__optimization_problem.design_space.normalize_grad(jac_u)
if np_any(np_isnan(jac_n)) and self.__optimization_problem.stop_if_nan:
raise FunctionIsNan(
"Function {}'s Jacobian is NaN "
"for x={}".format(self.__orig_func.name, xu_vect)
)
func_name_to_value = {
Database.get_gradient_name(self.__orig_func.name): jac_u
}
# store (x, j(x)) in database
self.__optimization_problem.database.store(xu_vect, func_name_to_value)
else:
jac_n = self.__optimization_problem.design_space.normalize_grad(jac_u)
if self.__normalize:
return jac_n
else:
return jac_u