Source code for gemseo.mlearning.api

# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

# Contributors:
#    INITIAL AUTHORS - initial API and implementation and/or initial
#                           documentation
#        :author: Matthias De Lozzo
#        :author: Syver Doving Agdestein
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""
Machine learning API
--------------------

The machine learning API provides methods for creating new and loading
existing machine learning models. It also provides methods for listing
available models and options.
"""
from __future__ import division, unicode_literals

import logging
from typing import Dict, List, Optional, Union

from gemseo.api import _get_schema
from gemseo.core.dataset import Dataset
from gemseo.mlearning.classification.classification import MLClassificationAlgo
from gemseo.mlearning.cluster.cluster import MLClusteringAlgo
from gemseo.mlearning.core.ml_algo import MLAlgo, TransformerType
from gemseo.mlearning.core.supervised import MLSupervisedAlgo
from gemseo.mlearning.regression.regression import MLRegressionAlgo
from gemseo.mlearning.transform.scaler.min_max_scaler import MinMaxScaler
from gemseo.utils.py23_compat import Path

LOGGER = logging.getLogger(__name__)

# pylint: disable=import-outside-toplevel


[docs]def get_mlearning_models(): # type:(...) -> List[str] """Get available machine learning algorithms. Returns: The available machine learning algorithms. See also -------- import_mlearning_model create_mlearning_model get_mlearning_options import_mlearning_model """ from gemseo.mlearning.core.factory import MLAlgoFactory factory = MLAlgoFactory() return factory.models
[docs]def get_regression_models(): # type:(...) -> List[str] """Get available regression models. Returns: The available regression models. See also -------- create_regression_model get_regression_options import_regression_model """ from gemseo.mlearning.regression.factory import RegressionModelFactory factory = RegressionModelFactory() return factory.models
[docs]def get_classification_models(): # type:(...) -> List[str] """Get available classification models. Returns: The available classification models. See also -------- create_classification_model get_classification_options import_classification_model """ from gemseo.mlearning.classification.factory import ClassificationModelFactory factory = ClassificationModelFactory() return factory.models
[docs]def get_clustering_models(): # type:(...) -> List[str] """Get available clustering models. Returns: The available clustering models. See also -------- create_clustering_model get_clustering_options import_clustering_model """ from gemseo.mlearning.cluster.factory import ClusteringModelFactory factory = ClusteringModelFactory() return factory.models
[docs]def create_mlearning_model( name, # type: str data, # type: Dataset transformer=None, # type: Optional[TransformerType] **parameters ): # type:(...) -> MLAlgo """Create a machine learning algorithm from a learning dataset. Args: name: The name of the machine learning algorithm. data: The learning dataset. transformer: The strategies to transform the variables. Values are instances of :class:`.Transformer` while keys are names of either variables or groups of variables. If None, do not transform the variables. parameters: The parameters of the machine learning algorithm. Returns: A machine learning model. See also -------- get_mlearning_models get_mlearning_options import_mlearning_model """ from gemseo.mlearning.core.factory import MLAlgoFactory factory = MLAlgoFactory() return factory.create(name, data=data, transformer=transformer, **parameters)
minmax_inputs = {Dataset.INPUT_GROUP: MinMaxScaler()}
[docs]def create_regression_model( name, # type: str data, # type: Dataset transformer=MLRegressionAlgo.DEFAULT_TRANSFORMER, # type:Optional[TransformerType] **parameters ): # type: (...) -> MLRegressionAlgo """Create a regression model from a learning dataset. Args: name: The name of the regression algorithm. data: The learning dataset. transformer: The strategies to transform the variables. Values are instances of :class:`.Transformer` while keys are names of either variables or groups of variables. If None, do not transform the variables. parameters: The parameters of the regression model. Returns: A regression model. See also -------- get_regression_models get_regression_options import_regression_model """ from gemseo.mlearning.regression.factory import RegressionModelFactory factory = RegressionModelFactory() if ( name == "PCERegression" and isinstance(transformer, dict) and Dataset.INPUT_GROUP in transformer ): LOGGER.warning( "Remove input data transformation because " "PCERegression does not support transformers." ) del transformer[Dataset.INPUT_GROUP] return factory.create(name, data=data, transformer=transformer, **parameters)
[docs]def create_classification_model( name, # type: str data, # type: Dataset transformer=MLSupervisedAlgo.DEFAULT_TRANSFORMER, # type:Optional[TransformerType] **parameters ): # type: (...) -> MLClassificationAlgo """Create a classification model from a learning dataset. Args: name: The name of the classification algorithm. data: The learning dataset. transformer: The strategies to transform the variables. Values are instances of :class:`.Transformer` while keys are names of either variables or groups of variables. If None, do not transform the variables. parameters: The parameters of the classification model. Returns: A classification model. See also -------- get_classification_models get_classification_options import_classification_model """ from gemseo.mlearning.classification.factory import ClassificationModelFactory factory = ClassificationModelFactory() return factory.create(name, data=data, transformer=transformer, **parameters)
[docs]def create_clustering_model( name, # type: str data, # type: Dataset transformer=None, # type:Optional[TransformerType] **parameters ): # type: (...) -> MLClusteringAlgo """Create a clustering model from a learning dataset. Args: name: The name of the clustering algorithm. data: The learning dataset. transformer: The strategies to transform the variables. Values are instances of :class:`.Transformer` while keys are names of either variables or groups of variables. If None, do not transform the variables. parameters: The parameters of the clustering model. Returns: A clustering model. See also -------- get_clustering_models get_clustering_options import_clustering_model """ from gemseo.mlearning.cluster.factory import ClusteringModelFactory factory = ClusteringModelFactory() return factory.create(name, data=data, transformer=transformer, **parameters)
[docs]def import_mlearning_model( directory, # type: Union[str,Path] ): # type: (...) -> MLAlgo """Import a machine learning algorithm from a directory. Args: directory: The path to the directory. Returns: A machine learning model. See also -------- create_mlearning_model get_mlearning_models get_mlearning_options """ from gemseo.mlearning.core.factory import MLAlgoFactory factory = MLAlgoFactory() return factory.load(directory)
[docs]def import_regression_model( directory, # type: Union[str,Path] ): # type: (...) -> MLRegressionAlgo """Import a regression model from a directory. Args: directory: The path of the directory. Returns: A regression model. See also -------- create_regression_model get_regression_models get_regression_options """ from gemseo.mlearning.regression.factory import RegressionModelFactory factory = RegressionModelFactory() return factory.load(directory)
[docs]def import_classification_model( directory, # type: Union[str,Path] ): # type: (...) -> MLClassificationAlgo """Import a classification model from a directory. Args: directory: The path to the directory. Returns: A classification model. See also -------- create_classification_model get_classification_models get_classification_options """ from gemseo.mlearning.classification.factory import ClassificationModelFactory factory = ClassificationModelFactory() return factory.load(directory)
[docs]def import_clustering_model( directory, # type: Union[str,Path] ): # type: (...) -> MLClusteringAlgo """Import a clustering model from a directory. Args: directory: The path to the directory. Returns: A clustering model. See also -------- create_clustering_model get_clustering_models get_clustering_options """ from gemseo.mlearning.cluster.factory import ClusteringModelFactory factory = ClusteringModelFactory() return factory.load(directory)
[docs]def get_mlearning_options( model_name, # type: str output_json=False, # type: bool pretty_print=True, # type:bool ): # type: (...) -> Union[Dict[str,str],str] """Find the available options for a machine learning algorithm. Args: model_name: The name of the machine learning algorithm. output_json: Whether to apply JSON format for the schema. pretty_print: Whether to print the schema in a pretty table. Returns: The options schema of the machine learning algorithm. See also -------- create_mlearning_model get_mlearning_models import_mlearning_model """ from gemseo.mlearning.core.factory import MLAlgoFactory factory = MLAlgoFactory().factory grammar = factory.get_options_grammar(model_name) return _get_schema(grammar, output_json, pretty_print)
[docs]def get_regression_options( model_name, # type: str output_json=False, # type: bool pretty_print=True, # type:bool ): # type: (...) -> Union[Dict[str,str],str] """Find the available options for a regression model. Args: model_name: The name of the regression model. output_json: Whether to apply JSON format for the schema. pretty_print: Print the schema in a pretty table. Returns: The options schema of the regression model. See also -------- create_regression_model get_regression_models import_regression_model """ from gemseo.mlearning.regression.factory import RegressionModelFactory factory = RegressionModelFactory().factory grammar = factory.get_options_grammar(model_name) return _get_schema(grammar, output_json, pretty_print)
[docs]def get_classification_options( model_name, # type: str output_json=False, # type: bool pretty_print=True, # type:bool ): # type: (...) -> Union[Dict[str,str],str] """Find the available options for a classification model. Args: model_name: The name of the classification model. output_json: Whether to apply JSON format for the schema. pretty_print: Print the schema in a pretty table. Returns: The options schema of the classification model. See also -------- create_classification_model get_classification_models import_classification_model """ from gemseo.mlearning.classification.factory import ClassificationModelFactory factory = ClassificationModelFactory().factory grammar = factory.get_options_grammar(model_name) return _get_schema(grammar, output_json, pretty_print)
[docs]def get_clustering_options( model_name, # type: str output_json=False, # type: bool pretty_print=True, # type:bool ): # type: (...) -> Union[Dict[str,str],str] """Find the available options for clustering model. Args: model_name: The name of the clustering model. output_json: Whether to apply JSON format for the schema. pretty_print: Print the schema in a pretty table. Returns: The options schema of the clustering model. See also -------- create_clustering_model get_clustering_models import_clustering_model """ from gemseo.mlearning.cluster.factory import ClusteringModelFactory factory = ClusteringModelFactory().factory grammar = factory.get_options_grammar(model_name) return _get_schema(grammar, output_json, pretty_print)