Source code for gemseo.mlearning.core.unsupervised
# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Syver Doving Agdestein
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""This module contains the base class for the unsupervised machine learning algorithms.
The :mod:`~gemseo.mlearning.core.unsupervised` module implements
the concept of unsupervised machine learning models,
where the data has no notion of input or output.
This concept is implemented through the :class:`.MLUnsupervisedAlgo` class,
which inherits from the :class:`.MLAlgo` class.
"""
from __future__ import division, unicode_literals
from typing import Iterable, NoReturn, Optional, Sequence
from numpy import hstack, ndarray
from gemseo.core.dataset import Dataset
from gemseo.mlearning.core.ml_algo import MLAlgo, MLAlgoParameterType, TransformerType
[docs]class MLUnsupervisedAlgo(MLAlgo):
"""Unsupervised machine learning algorithm.
Inheriting classes shall overload the
:meth:`!MLUnsupervisedAlgo._fit` method.
Attributes:
input_names (List[str]): The names of the variables.
"""
ABBR = "MLUnupervisedAlgo"
def __init__(
self,
data, # type: Dataset
transformer=None, # type: Optional[TransformerType]
var_names=None, # type: Optional[Iterable[str]]
**parameters # type: MLAlgoParameterType
): # type: (...) -> None
"""
Args:
var_names: The names of the variables.
If None, consider all variables mentioned in the learning dataset.
"""
super(MLUnsupervisedAlgo, self).__init__(
data, transformer=transformer, var_names=var_names, **parameters
)
self.var_names = var_names or data.variables
def _learn(
self,
indices, # type: Optional[Sequence[int]]
): # type: (...) -> None
if set(self.var_names) == set(self.learning_set.variables):
data = []
for group in self.learning_set.groups:
sub_data = self.learning_set.get_data_by_group(group)
if group in self.transformer:
sub_data = self.transformer[group].fit_transform(sub_data)
data.append(sub_data)
data = hstack(data)
else:
data = []
for name in self.var_names:
sub_data = self.learning_set.get_data_by_names([name], False)
if name in self.transformer:
sub_data = self.transformer[name].fit_transform(sub_data)
data.append(sub_data)
data = hstack(data)
if indices is not None:
data = data[indices]
self._fit(data)
def _fit(
self,
data, # type: ndarray
): # type: (...) -> NoReturn
"""Fit model on data.
Args:
data: The data with shape (n_samples, n_variables).
"""
raise NotImplementedError