# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
r"""Class to apply the OAT technique used by :class:`.MorrisIndices`.
OAT technique
-------------
The purpose of the One-At-a-Time (OAT) methodology is to quantify the elementary effect
.. math::
df_i = f(X_1+dX_1,\ldots,X_{i-1}+dX_{i-1},X_i+dX_i,\ldots,X_d)
-
f(X_1+dX_1,\ldots,X_{i-1}+dX_{i-1},X_i,\ldots,X_d)
associated with a small variation :math:`dX_i` of :math:`X_i` with
.. math::
df_1 = f(X_1+dX_1,\ldots,X_d)-f(X_1,\ldots,X_d)
The elementary effects :math:`df_1,\ldots,df_d` are computed sequentially
from an initial point
.. math::
X=(X_1,\ldots,X_d)
From these elementary effects, we can compare their absolute values
:math:`|df_1|,\ldots,|df_d|` and sort :math:`X_1,\ldots,X_d` accordingly.
"""
from __future__ import division, unicode_literals
import logging
from copy import deepcopy
from typing import Mapping, Tuple
from numpy import inf, ndarray
from gemseo.algos.design_space import DesignSpace
from gemseo.core.discipline import MDODiscipline
LOGGER = logging.getLogger(__name__)
[docs]class OATSensitivity(MDODiscipline):
"""A :class:`.MDODiscipline` computing finite differences of another one."""
_PREFIX = "fd"
def __init__(
self,
discipline, # type: MDODiscipline
parameter_space, # type: DesignSpace
step, # type: float
): # type: (...) -> None # noqa: D107 D205 D212 D415
"""
Args:
discipline: A discipline.
parameter_space: A parameter space.
step: The variation step of an input relative to its range,
between 0 and 0.5 (i.e. between 0 and 50% input range variation).
Raises:
ValueError: If the relative variation step is lower than or equal to 0
or greater than or equal to 0.5.
"""
super(OATSensitivity, self).__init__()
inputs = parameter_space.variables_names
self.input_grammar.initialize_from_data_names(inputs)
outputs = [
self.get_fd_name(input_, output)
for output in discipline.get_output_data_names()
for input_ in inputs
]
self.output_grammar.initialize_from_data_names(outputs)
self.discipline = discipline
if not 0 < step < 0.5:
raise ValueError(
"Relative variation step must be "
"strictly comprised between 0 and 0.5; got {}.".format(step)
)
self.step = step
self.parameter_space = parameter_space
self.output_range = {
name: [inf, -inf] for name in self.discipline.get_output_data_names()
}
def __update_output_range(
self,
data, # type: Mapping[str,ndarray]
): # type: (...) -> None
"""Update the lower and upper bounds of the outputs from data.
Args:
data: The names and values of the outputs.
"""
for output_name in self.discipline.get_output_data_names():
output_value = data[output_name]
output_range = self.output_range[output_name]
output_range[0] = min(output_value, output_range[0])
output_range[1] = max(output_value, output_range[1])
def _run(self): # type: (...) -> None
inputs = self.get_input_data()
self.discipline.execute(inputs)
previous_data = self.discipline.local_data
self.__update_output_range(previous_data)
for input_name in self.get_input_data_names():
inputs = self.__update_inputs(inputs, input_name, self.step)
self.discipline.execute(inputs)
new_data = self.discipline.local_data
self.__update_output_range(new_data)
for output_name in self.discipline.get_output_data_names():
out_diff_name = self.get_fd_name(input_name, output_name)
out_diff_value = new_data[output_name] - previous_data[output_name]
self.local_data[out_diff_name] = out_diff_value
previous_data = new_data
[docs] @staticmethod
def get_io_names(
fd_name, # type: str
): # type: (...) -> Tuple[str,str]
"""Get the output and input names from finite difference name.
Args:
fd_name: A finite difference name.
Returns:
The output name, then the input name.
"""
split_name = fd_name.split("!")
output_name = split_name[1]
input_name = split_name[2]
return output_name, input_name
[docs] def get_fd_name(
self,
input_name, # type: str
output_name, # type: str
): # type: (...) -> str
"""Return the output name associated to an input name.
Args:
input_name: An input name.
output_name: An output name.
Returns:
The finite difference name.
"""
return "{}!{}!{}".format(self._PREFIX, output_name, input_name)
def __update_inputs(
self,
inputs, # type: Mapping[str,ndarray]
input_name, # type:str
step, # type:float
): # type: (...) -> Mapping[str,ndarray]
"""Update the input data from a finite difference step and an input name.
Args:
inputs: The original input data.
input_name: An input name.
step: The variation step of an input relative to its range,
between 0 and 0.5 (i.e. between 0 and 50% input range variation).
Returns:
The updated input data.
"""
inputs = deepcopy(inputs)
l_b = self.parameter_space.get_lower_bound(input_name)
u_b = self.parameter_space.get_upper_bound(input_name)
abs_step = step * (u_b - l_b)
if inputs[input_name] + abs_step > u_b:
inputs[input_name] -= abs_step
else:
inputs[input_name] += abs_step
return inputs