Source code for gemseo.uncertainty.statistics.tolerance_interval.lognormal
# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Computation of tolerance intervals from a data-fitted log-normal distribution."""
from typing import Tuple
from numpy import exp, ndarray
from gemseo.uncertainty.statistics.tolerance_interval.distribution import (
ToleranceIntervalSide,
)
from gemseo.uncertainty.statistics.tolerance_interval.normal import (
NormalToleranceInterval,
)
[docs]class LogNormalToleranceInterval(NormalToleranceInterval):
"""Computation of tolerance intervals from a data-fitted log-normal distribution.
The formulae come from the R library *tolerance* [1]_.
.. [1] Derek S. Young,
*tolerance: An R Package for Estimating Tolerance Intervals*,
Journal of Statistical Software, 36(5), 2010
"""
def __init__(
self,
size, # type: int
mean, # type: float
std, # type: float
location, # type: float
): # type:(...) -> None
# noqa: D205 D212 D415
"""
Args:
mean: The estimation of the mean of the natural logarithm
of a log-normal distributed random variable.
std: The estimation of the standard deviation of the natural logarithm
of a log-normal distributed random variable.
location: The estimation of the location of the log-normal distributed.
"""
super(LogNormalToleranceInterval, self).__init__(size, mean, std)
self.__location = location
[docs] def compute(
self,
coverage, # type: float
confidence=0.95, # type: float
side=ToleranceIntervalSide.BOTH, # type: ToleranceIntervalSide
): # type: (...) -> Tuple[ndarray,ndarray]
# noqa: D102
lower, upper = super(LogNormalToleranceInterval, self).compute(
coverage, confidence, side
)
return exp(lower) + self.__location, exp(upper) + self.__location