Note
Click here to download the full example code
K nearest neighbors classification¶
We want to classify the Iris dataset using a KNN classifier.
from __future__ import division, unicode_literals
from numpy import array
from gemseo.api import configure_logger, load_dataset
from gemseo.mlearning.api import create_classification_model
configure_logger()
Out:
<RootLogger root (INFO)>
Load Iris dataset¶
iris = load_dataset("IrisDataset", as_io=True)
Create the classification model¶
Then, we build the linear regression model from the discipline cache and displays this model.
model = create_classification_model("KNNClassifier", data=iris)
model.learn()
print(model)
Out:
KNNClassifier(n_neighbors=5)
based on the scikit-learn library
built from 150 learning samples
Predict output¶
Once it is built, we can use it for prediction.
input_value = {
"sepal_length": array([4.5]),
"sepal_width": array([3.0]),
"petal_length": array([1.0]),
"petal_width": array([0.2]),
}
output_value = model.predict(input_value)
print(output_value)
Out:
{'specy': array([0])}
Total running time of the script: ( 0 minutes 0.005 seconds)