derivation_modes module¶
Derivation modes for the GEMSEO processes.
- gemseo.core.derivatives.derivation_modes.ADJOINT_MODE = 'adjoint'¶
The adjoint resolution mode for MDAs, solves one system per output.
- gemseo.core.derivatives.derivation_modes.AUTO_MODE = 'auto'¶
Automatic switch between direct, reverse or adjoint depending on data sizes.
- gemseo.core.derivatives.derivation_modes.AVAILABLE_APPROX_MODES = ('complex_step', 'finite_differences')¶
The approximation derivation modes.
- gemseo.core.derivatives.derivation_modes.AVAILABLE_MODES = ('direct', 'adjoint', 'auto', 'reverse')¶
All possible derivation modes
- gemseo.core.derivatives.derivation_modes.COMPLEX_STEP = 'complex_step'¶
The complex step method used to approximate the Jacobians by perturbing each variable with a small complex number.
- gemseo.core.derivatives.derivation_modes.DIRECT_MODE = 'direct'¶
The direct Jacobian accumulation, chain rule from inputs to outputs, or derivation of an MDA that solves one system per input.
- gemseo.core.derivatives.derivation_modes.FINITE_DIFFERENCES = 'finite_differences'¶
The finite differences method used to approximate the Jacobians by perturbing each variable with a small real number.
- gemseo.core.derivatives.derivation_modes.REVERSE_MODE = 'reverse'¶
The reverse Jacobian accumulation, chain rule from outputs to inputs.