Note
Click here to download the full example code
Analytical test case # 2¶
In this example, we consider a simple optimization problem to illustrate algorithms interfaces and optimization libraries integration.
Imports¶
from __future__ import annotations
from gemseo.algos.design_space import DesignSpace
from gemseo.algos.doe.doe_factory import DOEFactory
from gemseo.algos.opt.opt_factory import OptimizersFactory
from gemseo.algos.opt_problem import OptimizationProblem
from gemseo.api import configure_logger
from gemseo.api import execute_post
from gemseo.core.mdofunctions.mdo_function import MDOFunction
from numpy import cos
from numpy import exp
from numpy import ones
from numpy import sin
configure_logger()
<RootLogger root (INFO)>
Define the objective function¶
We define the objective function \(f(x)=\sin(x)-\exp(x)\)
using a MDOFunction
defined by the sum of MDOFunction
objects.
f_1 = MDOFunction(sin, name="f_1", jac=cos, expr="sin(x)")
f_2 = MDOFunction(exp, name="f_2", jac=exp, expr="exp(x)")
objective = f_1 - f_2
See also
The following operators are implemented: addition, subtraction and multiplication. The minus operator is also defined.
Define the design space¶
Then, we define the DesignSpace
with GEMSEO.
design_space = DesignSpace()
design_space.add_variable("x", l_b=-2.0, u_b=2.0, value=-0.5 * ones(1))
Define the optimization problem¶
Then, we define the OptimizationProblem
with GEMSEO.
problem = OptimizationProblem(design_space)
problem.objective = objective
Solve the optimization problem using an optimization algorithm¶
Finally, we solve the optimization problems with GEMSEO interface.
Solve the problem¶
opt = OptimizersFactory().execute(problem, "L-BFGS-B", normalize_design_space=True)
print("Optimum = ", opt)
INFO - 17:24:46: Optimization problem:
INFO - 17:24:46: minimize f_1-f_2 = sin(x)-exp(x)
INFO - 17:24:46: with respect to x
INFO - 17:24:46: over the design space:
INFO - 17:24:46: +------+-------------+-------+-------------+-------+
INFO - 17:24:46: | name | lower_bound | value | upper_bound | type |
INFO - 17:24:46: +------+-------------+-------+-------------+-------+
INFO - 17:24:46: | x | -2 | -0.5 | 2 | float |
INFO - 17:24:46: +------+-------------+-------+-------------+-------+
INFO - 17:24:46: Solving optimization problem with algorithm L-BFGS-B:
INFO - 17:24:46: ... 0%| | 0/999 [00:00<?, ?it]
INFO - 17:24:46: ... 0%| | 1/999 [00:00<00:00, 1559.22 it/sec, obj=-1.09]
INFO - 17:24:46: ... 0%| | 2/999 [00:00<00:01, 731.29 it/sec, obj=-1.04]
INFO - 17:24:46: ... 0%| | 3/999 [00:00<00:01, 803.81 it/sec, obj=-1.24]
INFO - 17:24:46: ... 0%| | 4/999 [00:00<00:01, 722.41 it/sec, obj=-1.23]
INFO - 17:24:46: ... 1%| | 5/999 [00:00<00:01, 674.37 it/sec, obj=-1.24]
INFO - 17:24:46: ... 1%| | 6/999 [00:00<00:01, 653.78 it/sec, obj=-1.24]
INFO - 17:24:46: ... 1%| | 7/999 [00:00<00:01, 634.64 it/sec, obj=-1.24]
INFO - 17:24:46: Optimization result:
INFO - 17:24:46: Optimizer info:
INFO - 17:24:46: Status: 0
INFO - 17:24:46: Message: CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL
INFO - 17:24:46: Number of calls to the objective function by the optimizer: 8
INFO - 17:24:46: Solution:
INFO - 17:24:46: Objective: -1.236108341859242
INFO - 17:24:46: Design space:
INFO - 17:24:46: +------+-------------+--------------------+-------------+-------+
INFO - 17:24:46: | name | lower_bound | value | upper_bound | type |
INFO - 17:24:46: +------+-------------+--------------------+-------------+-------+
INFO - 17:24:46: | x | -2 | -1.292695718944152 | 2 | float |
INFO - 17:24:46: +------+-------------+--------------------+-------------+-------+
Optimum = Optimization result:
Optimizer info:
Status: 0
Message: CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL
Number of calls to the objective function by the optimizer: 8
Solution:
Objective: -1.236108341859242
Note that you can get all the optimization algorithms names:
algo_list = OptimizersFactory().algorithms
print("Available algorithms ", algo_list)
Available algorithms ['NLOPT_MMA', 'NLOPT_COBYLA', 'NLOPT_SLSQP', 'NLOPT_BOBYQA', 'NLOPT_BFGS', 'NLOPT_NEWUOA', 'PDFO_COBYLA', 'PDFO_BOBYQA', 'PDFO_NEWUOA', 'PSEVEN', 'PSEVEN_FD', 'PSEVEN_MOM', 'PSEVEN_NCG', 'PSEVEN_NLS', 'PSEVEN_POWELL', 'PSEVEN_QP', 'PSEVEN_SQP', 'PSEVEN_SQ2P', 'PYMOO_GA', 'PYMOO_NSGA2', 'PYMOO_NSGA3', 'PYMOO_UNSGA3', 'PYMOO_RNSGA3', 'DUAL_ANNEALING', 'SHGO', 'DIFFERENTIAL_EVOLUTION', 'LINEAR_INTERIOR_POINT', 'REVISED_SIMPLEX', 'SIMPLEX', 'SLSQP', 'L-BFGS-B', 'TNC', 'SNOPTB']
Save the optimization results¶
We can serialize the results for further exploitation.
problem.export_hdf("my_optim.hdf5")
INFO - 17:24:46: Export optimization problem to file: my_optim.hdf5
Post-process the results¶
execute_post(problem, "OptHistoryView", show=True, save=False)
<gemseo.post.opt_history_view.OptHistoryView object at 0x7fcd1b30fa90>
Note
We can also save this plot using the arguments save=False
and file_path='file_path'
.
Solve the optimization problem using a DOE algorithm¶
We can also see this optimization problem as a trade-off and solve it by means of a design of experiments (DOE).
opt = DOEFactory().execute(problem, "lhs", n_samples=10, normalize_design_space=True)
print("Optimum = ", opt)
INFO - 17:24:47: Optimization problem:
INFO - 17:24:47: minimize f_1-f_2 = sin(x)-exp(x)
INFO - 17:24:47: with respect to x
INFO - 17:24:47: over the design space:
INFO - 17:24:47: +------+-------------+--------------------+-------------+-------+
INFO - 17:24:47: | name | lower_bound | value | upper_bound | type |
INFO - 17:24:47: +------+-------------+--------------------+-------------+-------+
INFO - 17:24:47: | x | -2 | -1.292695718944152 | 2 | float |
INFO - 17:24:47: +------+-------------+--------------------+-------------+-------+
INFO - 17:24:47: Solving optimization problem with algorithm lhs:
INFO - 17:24:47: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 17:24:47: ... 10%|█ | 1/10 [00:00<00:00, 2039.04 it/sec, obj=-5.17]
INFO - 17:24:47: ... 20%|██ | 2/10 [00:00<00:00, 1651.95 it/sec, obj=-1.15]
INFO - 17:24:47: ... 30%|███ | 3/10 [00:00<00:00, 1526.68 it/sec, obj=-1.24]
INFO - 17:24:47: ... 40%|████ | 4/10 [00:00<00:00, 1500.78 it/sec, obj=-1.13]
INFO - 17:24:47: ... 50%|█████ | 5/10 [00:00<00:00, 1502.26 it/sec, obj=-2.91]
INFO - 17:24:47: ... 60%|██████ | 6/10 [00:00<00:00, 1502.08 it/sec, obj=-1.75]
INFO - 17:24:47: ... 70%|███████ | 7/10 [00:00<00:00, 1503.03 it/sec, obj=-1.14]
INFO - 17:24:47: ... 80%|████████ | 8/10 [00:00<00:00, 1504.35 it/sec, obj=-1.05]
INFO - 17:24:47: ... 90%|█████████ | 9/10 [00:00<00:00, 1486.00 it/sec, obj=-1.23]
INFO - 17:24:47: ... 100%|██████████| 10/10 [00:00<00:00, 1482.03 it/sec, obj=-1]
INFO - 17:24:47: Optimization result:
INFO - 17:24:47: Optimizer info:
INFO - 17:24:47: Status: None
INFO - 17:24:47: Message: None
INFO - 17:24:47: Number of calls to the objective function by the optimizer: 18
INFO - 17:24:47: Solution:
INFO - 17:24:47: Objective: -5.174108803965848
INFO - 17:24:47: Design space:
INFO - 17:24:47: +------+-------------+-------------------+-------------+-------+
INFO - 17:24:47: | name | lower_bound | value | upper_bound | type |
INFO - 17:24:47: +------+-------------+-------------------+-------------+-------+
INFO - 17:24:47: | x | -2 | 1.815526693601343 | 2 | float |
INFO - 17:24:47: +------+-------------+-------------------+-------------+-------+
Optimum = Optimization result:
Optimizer info:
Status: None
Message: None
Number of calls to the objective function by the optimizer: 18
Solution:
Objective: -5.174108803965848
Total running time of the script: ( 0 minutes 1.610 seconds)