# Scatter plot matrix¶

In this example, we illustrate the use of the ScatterPlotMatrix plot on the Sobieski’s SSBJ problem.

from __future__ import annotations

from gemseo.api import configure_logger
from gemseo.api import create_discipline
from gemseo.api import create_scenario
from gemseo.problems.sobieski.core.problem import SobieskiProblem


## Import¶

The first step is to import some functions from the API and a method to get the design space.

configure_logger()

<RootLogger root (INFO)>


## Description¶

The ScatterPlotMatrix post-processing builds the scatter plot matrix among design variables and outputs functions. Each non-diagonal block represents the samples according to the x- and y- coordinates names while the diagonal ones approximate the probability distributions of the variables, using a kernel-density estimator.

## Create disciplines¶

At this point, we instantiate the disciplines of Sobieski’s SSBJ problem: Propulsion, Aerodynamics, Structure and Mission

disciplines = create_discipline(
[
"SobieskiPropulsion",
"SobieskiAerodynamics",
"SobieskiStructure",
"SobieskiMission",
]
)


## Create design space¶

We also read the design space from the SobieskiProblem.

design_space = SobieskiProblem().design_space


## Create and execute scenario¶

The next step is to build a DOE scenario in order to maximize the range, encoded ‘y_4’, with respect to the design parameters, while satisfying the inequality constraints ‘g_1’, ‘g_2’ and ‘g_3’. We can use the MDF formulation, the Monte Carlo DOE algorithm and 30 samples.

scenario = create_scenario(
disciplines,
formulation="MDF",
objective_name="y_4",
maximize_objective=True,
design_space=design_space,
scenario_type="DOE",
)
scenario.set_differentiation_method()
for constraint in ["g_1", "g_2", "g_3"]:
scenario.execute({"algo": "OT_MONTE_CARLO", "n_samples": 30})

    INFO - 17:19:12:
INFO - 17:19:12: *** Start DOEScenario execution ***
INFO - 17:19:12: DOEScenario
INFO - 17:19:12:    Disciplines: SobieskiAerodynamics SobieskiMission SobieskiPropulsion SobieskiStructure
INFO - 17:19:12:    MDO formulation: MDF
INFO - 17:19:12: Optimization problem:
INFO - 17:19:12:    minimize -y_4(x_shared, x_1, x_2, x_3)
INFO - 17:19:12:    with respect to x_1, x_2, x_3, x_shared
INFO - 17:19:12:    subject to constraints:
INFO - 17:19:12:       g_1(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 17:19:12:       g_2(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 17:19:12:       g_3(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 17:19:12:    over the design space:
INFO - 17:19:12:    +-------------+-------------+-------+-------------+-------+
INFO - 17:19:12:    | name        | lower_bound | value | upper_bound | type  |
INFO - 17:19:12:    +-------------+-------------+-------+-------------+-------+
INFO - 17:19:12:    | x_shared[0] |     0.01    |  0.05 |     0.09    | float |
INFO - 17:19:12:    | x_shared[1] |    30000    | 45000 |    60000    | float |
INFO - 17:19:12:    | x_shared[2] |     1.4     |  1.6  |     1.8     | float |
INFO - 17:19:12:    | x_shared[3] |     2.5     |  5.5  |     8.5     | float |
INFO - 17:19:12:    | x_shared[4] |      40     |   55  |      70     | float |
INFO - 17:19:12:    | x_shared[5] |     500     |  1000 |     1500    | float |
INFO - 17:19:12:    | x_1[0]      |     0.1     |  0.25 |     0.4     | float |
INFO - 17:19:12:    | x_1[1]      |     0.75    |   1   |     1.25    | float |
INFO - 17:19:12:    | x_2         |     0.75    |   1   |     1.25    | float |
INFO - 17:19:12:    | x_3         |     0.1     |  0.5  |      1      | float |
INFO - 17:19:12:    +-------------+-------------+-------+-------------+-------+
INFO - 17:19:12: Solving optimization problem with algorithm OT_MONTE_CARLO:
INFO - 17:19:12: ...   0%|          | 0/30 [00:00<?, ?it]
INFO - 17:19:12: ...   3%|▎         | 1/30 [00:00<00:04,  5.92 it/sec, obj=-166]
INFO - 17:19:12: ...   7%|▋         | 2/30 [00:00<00:03,  8.76 it/sec, obj=-484]
INFO - 17:19:13: ...  10%|█         | 3/30 [00:00<00:02, 10.49 it/sec, obj=-481]
INFO - 17:19:13: ...  13%|█▎        | 4/30 [00:00<00:02, 11.63 it/sec, obj=-384]
INFO - 17:19:13: ...  17%|█▋        | 5/30 [00:00<00:02, 12.45 it/sec, obj=-1.14e+3]
INFO - 17:19:13: ...  20%|██        | 6/30 [00:00<00:01, 13.06 it/sec, obj=-290]
INFO - 17:19:13: ...  23%|██▎       | 7/30 [00:00<00:01, 13.54 it/sec, obj=-630]
INFO - 17:19:13: ...  27%|██▋       | 8/30 [00:00<00:01, 13.62 it/sec, obj=-346]
INFO - 17:19:13: ...  30%|███       | 9/30 [00:00<00:01, 13.81 it/sec, obj=-626]
INFO - 17:19:13: ...  33%|███▎      | 10/30 [00:00<00:01, 13.97 it/sec, obj=-621]
INFO - 17:19:13: ...  37%|███▋      | 11/30 [00:00<00:01, 14.00 it/sec, obj=-280]
INFO - 17:19:13: ...  40%|████      | 12/30 [00:00<00:01, 13.81 it/sec, obj=-288]
INFO - 17:19:13: ...  43%|████▎     | 13/30 [00:00<00:01, 13.48 it/sec, obj=-257]
INFO - 17:19:13: ...  47%|████▋     | 14/30 [00:01<00:01, 13.28 it/sec, obj=-367]
INFO - 17:19:13: ...  50%|█████     | 15/30 [00:01<00:01, 13.27 it/sec, obj=-1.08e+3]
INFO - 17:19:13: ...  53%|█████▎    | 16/30 [00:01<00:01, 13.40 it/sec, obj=-344]
INFO - 17:19:14: ...  57%|█████▋    | 17/30 [00:01<00:00, 13.31 it/sec, obj=-368]
INFO - 17:19:14: ...  60%|██████    | 18/30 [00:01<00:00, 13.29 it/sec, obj=-253]
INFO - 17:19:14: ...  63%|██████▎   | 19/30 [00:01<00:00, 13.22 it/sec, obj=-129]
INFO - 17:19:14: ...  67%|██████▋   | 20/30 [00:01<00:00, 13.26 it/sec, obj=-1.07e+3]
INFO - 17:19:14: ...  70%|███████   | 21/30 [00:01<00:00, 13.39 it/sec, obj=-341]
INFO - 17:19:14: ...  73%|███████▎  | 22/30 [00:01<00:00, 13.48 it/sec, obj=-1e+3]
INFO - 17:19:14: ...  77%|███████▋  | 23/30 [00:01<00:00, 13.36 it/sec, obj=-586]
INFO - 17:19:14: ...  80%|████████  | 24/30 [00:01<00:00, 13.44 it/sec, obj=-483]
INFO - 17:19:14: ...  83%|████████▎ | 25/30 [00:01<00:00, 13.51 it/sec, obj=-392]
INFO - 17:19:14: ...  87%|████████▋ | 26/30 [00:01<00:00, 13.62 it/sec, obj=-406]
INFO - 17:19:14: ...  90%|█████████ | 27/30 [00:01<00:00, 13.56 it/sec, obj=-207]
INFO - 17:19:14: ...  93%|█████████▎| 28/30 [00:02<00:00, 13.66 it/sec, obj=-702]
INFO - 17:19:14: ...  97%|█████████▋| 29/30 [00:02<00:00, 13.80 it/sec, obj=-423]
INFO - 17:19:14: ... 100%|██████████| 30/30 [00:02<00:00, 13.85 it/sec, obj=-664]
INFO - 17:19:14: Optimization result:
INFO - 17:19:14:    Optimizer info:
INFO - 17:19:14:       Status: None
INFO - 17:19:14:       Message: None
INFO - 17:19:14:       Number of calls to the objective function by the optimizer: 30
INFO - 17:19:14:    Solution:
INFO - 17:19:14:       The solution is feasible.
INFO - 17:19:14:       Objective: -367.45739115001027
INFO - 17:19:14:       Standardized constraints:
INFO - 17:19:14:          g_1 = [-0.02478574 -0.00310924 -0.00855146 -0.01702654 -0.02484732 -0.04764585
INFO - 17:19:14:  -0.19235415]
INFO - 17:19:14:          g_2 = -0.09000000000000008
INFO - 17:19:14:          g_3 = [-0.98722984 -0.01277016 -0.60760341 -0.0557087 ]
INFO - 17:19:14:       Design space:
INFO - 17:19:14:       +-------------+-------------+---------------------+-------------+-------+
INFO - 17:19:14:       | name        | lower_bound |        value        | upper_bound | type  |
INFO - 17:19:14:       +-------------+-------------+---------------------+-------------+-------+
INFO - 17:19:14:       | x_shared[0] |     0.01    | 0.01230934749207792 |     0.09    | float |
INFO - 17:19:14:       | x_shared[1] |    30000    |  43456.87364611478  |    60000    | float |
INFO - 17:19:14:       | x_shared[2] |     1.4     |  1.731884935123487  |     1.8     | float |
INFO - 17:19:14:       | x_shared[3] |     2.5     |  3.894765253193514  |     8.5     | float |
INFO - 17:19:14:       | x_shared[4] |      40     |  57.92631048228255  |      70     | float |
INFO - 17:19:14:       | x_shared[5] |     500     |  520.4048463450415  |     1500    | float |
INFO - 17:19:14:       | x_1[0]      |     0.1     |  0.3994784918586811 |     0.4     | float |
INFO - 17:19:14:       | x_1[1]      |     0.75    |  0.9500312867674923 |     1.25    | float |
INFO - 17:19:14:       | x_2         |     0.75    |  1.205851870260564  |     1.25    | float |
INFO - 17:19:14:       | x_3         |     0.1     |  0.2108042391973412 |      1      | float |
INFO - 17:19:14:       +-------------+-------------+---------------------+-------------+-------+
INFO - 17:19:14: *** End DOEScenario execution (time: 0:00:02.195790) ***

{'eval_jac': False, 'algo': 'OT_MONTE_CARLO', 'n_samples': 30}


## Post-process scenario¶

Lastly, we post-process the scenario by means of the ScatterPlotMatrix plot which builds scatter plot matrix among design variables, objective function and constraints.

Tip

Each post-processing method requires different inputs and offers a variety of customization options. Use the API function get_post_processing_options_schema() to print a table with the options for any post-processing algorithm. Or refer to our dedicated page: Post-processing algorithms.

design_variables = ["x_shared", "x_1", "x_2", "x_3"]
scenario.post_process(
"ScatterPlotMatrix",
variable_names=design_variables + ["-y_4"],
save=False,
show=True,
)

<gemseo.post.scatter_mat.ScatterPlotMatrix object at 0x7fcd1b384370>


Total running time of the script: ( 0 minutes 10.127 seconds)

Gallery generated by Sphinx-Gallery