Note
Click here to download the full example code
Parallel coordinates¶
In this example, we illustrate the use of the
ParallelCoordinates
plot on the Sobieski’s SSBJ
problem.
from __future__ import annotations
from gemseo.api import configure_logger
from gemseo.api import create_discipline
from gemseo.api import create_scenario
from gemseo.problems.sobieski.core.problem import SobieskiProblem
Import¶
The first step is to import some functions from the API and a method to get the design space.
configure_logger()
<RootLogger root (INFO)>
Description¶
The ParallelCoordinates
post-processing
builds parallel coordinates plots among design
variables, outputs functions and constraints.
The ParallelCoordinates
portrays the design
variables history during the scenario execution. Each vertical coordinate is
dedicated to a design variable, normalized by its bounds.
A polyline joins all components of a given design vector and is colored by objective function values. This highlights the correlations between the values of the design variables and the values of the objective function.
Create disciplines¶
At this point, we instantiate the disciplines of Sobieski’s SSBJ problem: Propulsion, Aerodynamics, Structure and Mission
disciplines = create_discipline(
[
"SobieskiPropulsion",
"SobieskiAerodynamics",
"SobieskiStructure",
"SobieskiMission",
]
)
Create design space¶
We also read the design space from the SobieskiProblem
.
design_space = SobieskiProblem().design_space
Create and execute scenario¶
The next step is to build an MDO scenario in order to maximize the range, encoded ‘y_4’, with respect to the design parameters, while satisfying the inequality constraints ‘g_1’, ‘g_2’ and ‘g_3’. We can use the MDF formulation, the SLSQP optimization algorithm and a maximum number of iterations equal to 100.
scenario = create_scenario(
disciplines,
formulation="MDF",
objective_name="y_4",
maximize_objective=True,
design_space=design_space,
)
scenario.set_differentiation_method()
for constraint in ["g_1", "g_2", "g_3"]:
scenario.add_constraint(constraint, "ineq")
scenario.execute({"algo": "SLSQP", "max_iter": 10})
INFO - 17:18:51:
INFO - 17:18:51: *** Start MDOScenario execution ***
INFO - 17:18:51: MDOScenario
INFO - 17:18:51: Disciplines: SobieskiAerodynamics SobieskiMission SobieskiPropulsion SobieskiStructure
INFO - 17:18:51: MDO formulation: MDF
INFO - 17:18:51: Optimization problem:
INFO - 17:18:51: minimize -y_4(x_shared, x_1, x_2, x_3)
INFO - 17:18:51: with respect to x_1, x_2, x_3, x_shared
INFO - 17:18:51: subject to constraints:
INFO - 17:18:51: g_1(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 17:18:51: g_2(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 17:18:51: g_3(x_shared, x_1, x_2, x_3) <= 0.0
INFO - 17:18:51: over the design space:
INFO - 17:18:51: +-------------+-------------+-------+-------------+-------+
INFO - 17:18:51: | name | lower_bound | value | upper_bound | type |
INFO - 17:18:51: +-------------+-------------+-------+-------------+-------+
INFO - 17:18:51: | x_shared[0] | 0.01 | 0.05 | 0.09 | float |
INFO - 17:18:51: | x_shared[1] | 30000 | 45000 | 60000 | float |
INFO - 17:18:51: | x_shared[2] | 1.4 | 1.6 | 1.8 | float |
INFO - 17:18:51: | x_shared[3] | 2.5 | 5.5 | 8.5 | float |
INFO - 17:18:51: | x_shared[4] | 40 | 55 | 70 | float |
INFO - 17:18:51: | x_shared[5] | 500 | 1000 | 1500 | float |
INFO - 17:18:51: | x_1[0] | 0.1 | 0.25 | 0.4 | float |
INFO - 17:18:51: | x_1[1] | 0.75 | 1 | 1.25 | float |
INFO - 17:18:51: | x_2 | 0.75 | 1 | 1.25 | float |
INFO - 17:18:51: | x_3 | 0.1 | 0.5 | 1 | float |
INFO - 17:18:51: +-------------+-------------+-------+-------------+-------+
INFO - 17:18:51: Solving optimization problem with algorithm SLSQP:
INFO - 17:18:51: ... 0%| | 0/10 [00:00<?, ?it]
INFO - 17:18:52: ... 10%|█ | 1/10 [00:00<00:01, 6.68 it/sec, obj=-536]
INFO - 17:18:52: ... 20%|██ | 2/10 [00:00<00:01, 5.16 it/sec, obj=-2.12e+3]
WARNING - 17:18:52: MDAJacobi has reached its maximum number of iterations but the normed residual 1.4486313079508508e-06 is still above the tolerance 1e-06.
INFO - 17:18:52: ... 30%|███ | 3/10 [00:00<00:01, 4.50 it/sec, obj=-3.75e+3]
INFO - 17:18:52: ... 40%|████ | 4/10 [00:00<00:01, 4.38 it/sec, obj=-4.01e+3]
WARNING - 17:18:53: MDAJacobi has reached its maximum number of iterations but the normed residual 2.928004141058104e-06 is still above the tolerance 1e-06.
INFO - 17:18:53: ... 50%|█████ | 5/10 [00:01<00:01, 4.18 it/sec, obj=-4.49e+3]
INFO - 17:18:53: ... 60%|██████ | 6/10 [00:01<00:00, 4.23 it/sec, obj=-3.4e+3]
INFO - 17:18:53: ... 70%|███████ | 7/10 [00:01<00:00, 4.63 it/sec, obj=-4.93e+3]
INFO - 17:18:53: ... 80%|████████ | 8/10 [00:01<00:00, 4.86 it/sec, obj=-4.76e+3]
INFO - 17:18:53: ... 90%|█████████ | 9/10 [00:01<00:00, 5.10 it/sec, obj=-4.62e+3]
INFO - 17:18:53: ... 100%|██████████| 10/10 [00:01<00:00, 5.35 it/sec, obj=-4.56e+3]
INFO - 17:18:53: Optimization result:
INFO - 17:18:53: Optimizer info:
INFO - 17:18:53: Status: None
INFO - 17:18:53: Message: Maximum number of iterations reached. GEMSEO Stopped the driver
INFO - 17:18:53: Number of calls to the objective function by the optimizer: 12
INFO - 17:18:53: Solution:
INFO - 17:18:53: The solution is feasible.
INFO - 17:18:53: Objective: -3749.8868975554387
INFO - 17:18:53: Standardized constraints:
INFO - 17:18:53: g_1 = [-0.01671296 -0.03238836 -0.04350867 -0.05123129 -0.05681738 -0.13780658
INFO - 17:18:53: -0.10219342]
INFO - 17:18:53: g_2 = -0.0004062839430756249
INFO - 17:18:53: g_3 = [-0.66482546 -0.33517454 -0.11023156 -0.183255 ]
INFO - 17:18:53: Design space:
INFO - 17:18:53: +-------------+-------------+---------------------+-------------+-------+
INFO - 17:18:53: | name | lower_bound | value | upper_bound | type |
INFO - 17:18:53: +-------------+-------------+---------------------+-------------+-------+
INFO - 17:18:53: | x_shared[0] | 0.01 | 0.05989842901423112 | 0.09 | float |
INFO - 17:18:53: | x_shared[1] | 30000 | 59853.73840058666 | 60000 | float |
INFO - 17:18:53: | x_shared[2] | 1.4 | 1.4 | 1.8 | float |
INFO - 17:18:53: | x_shared[3] | 2.5 | 2.527371250092273 | 8.5 | float |
INFO - 17:18:53: | x_shared[4] | 40 | 69.86825198198687 | 70 | float |
INFO - 17:18:53: | x_shared[5] | 500 | 1495.734648986894 | 1500 | float |
INFO - 17:18:53: | x_1[0] | 0.1 | 0.4 | 0.4 | float |
INFO - 17:18:53: | x_1[1] | 0.75 | 0.7521124139939552 | 1.25 | float |
INFO - 17:18:53: | x_2 | 0.75 | 0.7520888531444992 | 1.25 | float |
INFO - 17:18:53: | x_3 | 0.1 | 0.1398000762238233 | 1 | float |
INFO - 17:18:53: +-------------+-------------+---------------------+-------------+-------+
INFO - 17:18:53: *** End MDOScenario execution (time: 0:00:01.903550) ***
{'max_iter': 10, 'algo': 'SLSQP'}
Post-process scenario¶
Lastly, we post-process the scenario by means of the
ParallelCoordinates
plot which parallel
coordinates plots among design variables, objective function and constraints.
Tip
Each post-processing method requires different inputs and offers a variety
of customization options. Use the API function
get_post_processing_options_schema()
to print a table with
the options for any post-processing algorithm.
Or refer to our dedicated page:
Post-processing algorithms.
scenario.post_process("ParallelCoordinates", save=False, show=True)
<gemseo.post.para_coord.ParallelCoordinates object at 0x7fcce8289400>
Total running time of the script: ( 0 minutes 2.938 seconds)