Note
Click here to download the full example code
Create a surrogate discipline¶
We want to build an MDODiscipline
based on a regression model approximating the following discipline
with two inputs and two outputs:
\(y_1=1+2x_1+3x_2\)
\(y_2=-1-2x_1-3x_2\)
over the unit hypercube \([0,1]\times[0,1]\).
For that, we use a SurrogateDiscipline
relying on a MLRegressionAlgo
from __future__ import annotations
from gemseo.api import configure_logger
from gemseo.api import create_design_space
from gemseo.api import create_discipline
from gemseo.api import create_scenario
from gemseo.api import create_surrogate
from numpy import array
Import¶
configure_logger()
<RootLogger root (INFO)>
Create the discipline to learn¶
We can implement this analytic discipline by means of the
AnalyticDiscipline
class.
expressions = {"y_1": "1+2*x_1+3*x_2", "y_2": "-1-2*x_1-3*x_2"}
discipline = create_discipline(
"AnalyticDiscipline", name="func", expressions=expressions
)
Create the input sampling space¶
We create the input sampling space by adding the variables one by one.
design_space = create_design_space()
design_space.add_variable("x_1", l_b=0.0, u_b=1.0)
design_space.add_variable("x_2", l_b=0.0, u_b=1.0)
Create the learning set¶
We can build a learning set by means of a
DOEScenario
with a full factorial design of
experiments. The number of samples can be equal to 9 for example.
scenario = create_scenario(
[discipline], "DisciplinaryOpt", "y_1", design_space, scenario_type="DOE"
)
scenario.execute({"algo": "fullfact", "n_samples": 9})
INFO - 17:23:03:
INFO - 17:23:03: *** Start DOEScenario execution ***
INFO - 17:23:03: DOEScenario
INFO - 17:23:03: Disciplines: func
INFO - 17:23:03: MDO formulation: DisciplinaryOpt
INFO - 17:23:03: Optimization problem:
INFO - 17:23:03: minimize y_1(x_1, x_2)
INFO - 17:23:03: with respect to x_1, x_2
INFO - 17:23:03: over the design space:
INFO - 17:23:03: +------+-------------+-------+-------------+-------+
INFO - 17:23:03: | name | lower_bound | value | upper_bound | type |
INFO - 17:23:03: +------+-------------+-------+-------------+-------+
INFO - 17:23:03: | x_1 | 0 | None | 1 | float |
INFO - 17:23:03: | x_2 | 0 | None | 1 | float |
INFO - 17:23:03: +------+-------------+-------+-------------+-------+
INFO - 17:23:03: Solving optimization problem with algorithm fullfact:
INFO - 17:23:03: ... 0%| | 0/9 [00:00<?, ?it]
INFO - 17:23:03: ... 11%|█ | 1/9 [00:00<00:00, 202.68 it/sec, obj=1]
INFO - 17:23:03: ... 22%|██▏ | 2/9 [00:00<00:00, 329.55 it/sec, obj=2]
INFO - 17:23:03: ... 33%|███▎ | 3/9 [00:00<00:00, 423.90 it/sec, obj=3]
INFO - 17:23:03: ... 44%|████▍ | 4/9 [00:00<00:00, 496.22 it/sec, obj=2.5]
INFO - 17:23:03: ... 56%|█████▌ | 5/9 [00:00<00:00, 552.73 it/sec, obj=3.5]
INFO - 17:23:03: ... 67%|██████▋ | 6/9 [00:00<00:00, 592.88 it/sec, obj=4.5]
INFO - 17:23:03: ... 78%|███████▊ | 7/9 [00:00<00:00, 630.03 it/sec, obj=4]
INFO - 17:23:03: ... 89%|████████▉ | 8/9 [00:00<00:00, 661.98 it/sec, obj=5]
INFO - 17:23:03: ... 100%|██████████| 9/9 [00:00<00:00, 689.03 it/sec, obj=6]
INFO - 17:23:03: Optimization result:
INFO - 17:23:03: Optimizer info:
INFO - 17:23:03: Status: None
INFO - 17:23:03: Message: None
INFO - 17:23:03: Number of calls to the objective function by the optimizer: 9
INFO - 17:23:03: Solution:
INFO - 17:23:03: Objective: 1.0
INFO - 17:23:03: Design space:
INFO - 17:23:03: +------+-------------+-------+-------------+-------+
INFO - 17:23:03: | name | lower_bound | value | upper_bound | type |
INFO - 17:23:03: +------+-------------+-------+-------------+-------+
INFO - 17:23:03: | x_1 | 0 | 0 | 1 | float |
INFO - 17:23:03: | x_2 | 0 | 0 | 1 | float |
INFO - 17:23:03: +------+-------------+-------+-------------+-------+
INFO - 17:23:03: *** End DOEScenario execution (time: 0:00:00.028862) ***
{'eval_jac': False, 'algo': 'fullfact', 'n_samples': 9}
Create the surrogate discipline¶
Then, we build the Gaussian process regression model from the database and displays this model.
dataset = scenario.export_to_dataset(opt_naming=False)
model = create_surrogate("GaussianProcessRegressor", data=dataset)
/home/docs/checkouts/readthedocs.org/user_builds/gemseo/envs/4.2.0/lib/python3.9/site-packages/gemseo/mlearning/transform/scaler/min_max_scaler.py:73: RuntimeWarning: divide by zero encountered in divide
self.coefficient = where(is_constant, nan_to_num(1 / l_b), 1 / delta)
INFO - 17:23:03: Build the surrogate discipline: GPR_DOEScenario
INFO - 17:23:03: Dataset name: DOEScenario
INFO - 17:23:03: Dataset size: 9
INFO - 17:23:03: Surrogate model: GaussianProcessRegressor
INFO - 17:23:03: Use the surrogate discipline: GPR_DOEScenario
INFO - 17:23:03: Inputs: x_1, x_2
INFO - 17:23:03: Outputs: y_1
INFO - 17:23:03: Jacobian: use finite differences
Predict output¶
Once it is built, we can use it for prediction, either with default inputs or with user-defined ones.
print(model.execute())
input_value = {"x_1": array([1.0]), "x_2": array([2.0])}
output_value = model.execute(input_value)
print(output_value)
{'x_1': array([0.5]), 'x_2': array([0.5]), 'y_1': array([3.49999999])}
{'x_1': array([1.]), 'x_2': array([2.]), 'y_1': array([8.50166061])}
Total running time of the script: ( 0 minutes 0.262 seconds)