auto_py module¶
A discipline interfacing a Python function.
- class gemseo.disciplines.auto_py.AutoDiscDataProcessor(out_names)[source]¶
Bases:
DataProcessor
A data processor forcing input data to float and output data to arrays.
Convert all GEMSEO scalar input data to floats, and convert all discipline output data to NumPy arrays.
Initialize self. See help(type(self)) for accurate signature.
- post_process_data(data)[source]¶
Post-process the output data.
Execute a post-processing of the output data after the
_run()
method of the discipline is called, and before they are checked bycheck_output_data()
.- Parameters:
data (dict[str, Union[float, numpy.ndarray]]) – The data to be processed.
- Returns:
The processed data with NumPy arrays as values.
- Return type:
- pre_process_data(data)[source]¶
Pre-process the input data.
Execute a pre-processing of input data after they are checked by
check_input_data()
, and before the_run()
method of the discipline is called.- Parameters:
data (dict[str, Union[float, numpy.ndarray]]) – The data to be processed.
- Returns:
The processed data where one-length NumPy arrays have been replaced with floats.
- Return type:
dict[str, Union[float, numpy.ndarray]]
- class gemseo.disciplines.auto_py.AutoPyDiscipline(py_func, py_jac=None, name=None, use_arrays=False, grammar_type='JSONGrammar')[source]¶
Bases:
MDODiscipline
Wrap a Python function into a discipline.
A simplified and straightforward way of integrating a discipline from a Python function.
The Python function can take and return only numbers and NumPy arrays.
The Python function may or may not include default values for input arguments, however, if the resulting
AutoPyDiscipline
is going to be placed inside anMDF
, aBiLevel
formulation or anMDA
with strong couplings, then the Python function must assign default values for its input arguments.Example
>>> from gemseo.disciplines.auto_py import AutoPyDiscipline >>> from numpy import array >>> def my_function(x=0., y=0.): >>> z1 = x + 2*y >>> z2 = x + 2*y + 1 >>> return z1, z2 >>> >>> discipline = AutoPyDiscipline(py_func=my_function) >>> discipline.execute() {'x': array([0.]), 'y': array([0.]), 'z1': array([0.]), 'z2': array([1.])} >>> discipline.execute({'x': array([1.]), 'y':array([-3.2])}) {'x': array([1.]), 'y': array([-3.2]), 'z1': array([-5.4]), 'z2': array([-4.4])}
- Parameters:
py_func (Callable[[DataType, ..., DataType], DataType]) – The Python function to compute the outputs from the inputs.
py_jac (Callable[[DataType, ..., DataType], ndarray] | None) – The Python function to compute the Jacobian from the inputs; its output value must be a 2D NumPy array with rows correspond to the outputs and columns to the inputs.
name (str | None) – The name of the discipline. If
None
, use the name of the Python function.use_arrays (bool) –
Whether the function is expected to take arrays as inputs and give outputs as arrays.
By default it is set to False.
grammar_type (str) –
The type of grammar to define the input and output variables, e.g.
MDODiscipline.JSON_GRAMMAR_TYPE
orMDODiscipline.SIMPLE_GRAMMAR_TYPE
.By default it is set to “JSONGrammar”.
- Raises:
TypeError – When
py_func
is not callable.
- classmethod activate_time_stamps()¶
Activate the time stamps.
For storing start and end times of execution and linearizations.
- Return type:
None
- add_differentiated_inputs(inputs=None)¶
Add the inputs against which to differentiate the outputs.
If the discipline grammar type is
MDODiscipline.JSON_GRAMMAR_TYPE
and an input is either a non-numeric array or not an array, it will be ignored. If an input is declared as an array but the type of its items is not defined, it is assumed as a numeric array.If the discipline grammar type is
MDODiscipline.SIMPLE_GRAMMAR_TYPE
and an input is not an array, it will be ignored. Keep in mind that in this case the array subtype is not checked.- Parameters:
inputs (Iterable[str] | None) – The input variables against which to differentiate the outputs. If None, all the inputs of the discipline are used.
- Raises:
ValueError – When the inputs wrt which differentiate the discipline are not inputs of the latter.
- Return type:
None
- add_differentiated_outputs(outputs=None)¶
Add the outputs to be differentiated.
If the discipline grammar type is
MDODiscipline.JSON_GRAMMAR_TYPE
and an output is either a non-numeric array or not an array, it will be ignored. If an output is declared as an array but the type of its items is not defined, it is assumed as a numeric array.If the discipline grammar type is
MDODiscipline.SIMPLE_GRAMMAR_TYPE
and an output is not an array, it will be ignored. Keep in mind that in this case the array subtype is not checked.- Parameters:
outputs (Iterable[str] | None) – The output variables to be differentiated. If None, all the outputs of the discipline are used.
- Raises:
ValueError – When the outputs to differentiate are not discipline outputs.
- Return type:
None
- add_namespace_to_input(name, namespace)¶
Add a namespace prefix to an existing input grammar element.
The updated input grammar element name will be
namespace
+namespaces_separator
+name
.
- add_namespace_to_output(name, namespace)¶
Add a namespace prefix to an existing output grammar element.
The updated output grammar element name will be
namespace
+namespaces_separator
+name
.
- add_status_observer(obs)¶
Add an observer for the status.
Add an observer for the status to be notified when self changes of status.
- Parameters:
obs (Any) – The observer to add.
- Return type:
None
- auto_get_grammar_file(is_input=True, name=None, comp_dir=None)¶
Use a naming convention to associate a grammar file to the discipline.
Search in the directory
comp_dir
for either an input grammar file namedname + "_input.json"
or an output grammar file namedname + "_output.json"
.- Parameters:
is_input (bool) –
Whether to search for an input or output grammar file.
By default it is set to True.
name (str | None) – The name to be searched in the file names. If
None
, use the name of the discipline class.comp_dir (str | Path | None) – The directory in which to search the grammar file. If None, use the
GRAMMAR_DIRECTORY
if any, or the directory of the discipline class module.
- Returns:
The grammar file path.
- Return type:
- check_input_data(input_data, raise_exception=True)¶
Check the input data validity.
- check_jacobian(input_data=None, derr_approx='finite_differences', step=1e-07, threshold=1e-08, linearization_mode='auto', inputs=None, outputs=None, parallel=False, n_processes=2, use_threading=False, wait_time_between_fork=0, auto_set_step=False, plot_result=False, file_path='jacobian_errors.pdf', show=False, fig_size_x=10, fig_size_y=10, reference_jacobian_path=None, save_reference_jacobian=False, indices=None)¶
Check if the analytical Jacobian is correct with respect to a reference one.
If reference_jacobian_path is not None and save_reference_jacobian is True, compute the reference Jacobian with the approximation method and save it in reference_jacobian_path.
If reference_jacobian_path is not None and save_reference_jacobian is False, do not compute the reference Jacobian but read it from reference_jacobian_path.
If reference_jacobian_path is None, compute the reference Jacobian without saving it.
- Parameters:
input_data (dict[str, ndarray] | None) – The input data needed to execute the discipline according to the discipline input grammar. If None, use the
MDODiscipline.default_inputs
.derr_approx (str) –
The approximation method, either “complex_step” or “finite_differences”.
By default it is set to “finite_differences”.
threshold (float) –
The acceptance threshold for the Jacobian error.
By default it is set to 1e-08.
linearization_mode (str) –
the mode of linearization: direct, adjoint or automated switch depending on dimensions of inputs and outputs (Default value = ‘auto’)
By default it is set to “auto”.
inputs (Iterable[str] | None) – The names of the inputs wrt which to differentiate the outputs.
outputs (Iterable[str] | None) – The names of the outputs to be differentiated.
step (float) –
The differentiation step.
By default it is set to 1e-07.
parallel (bool) –
Whether to differentiate the discipline in parallel.
By default it is set to False.
n_processes (int) –
The maximum simultaneous number of threads, if
use_threading
is True, or processes otherwise, used to parallelize the execution.By default it is set to 2.
use_threading (bool) –
Whether to use threads instead of processes to parallelize the execution; multiprocessing will copy (serialize) all the disciplines, while threading will share all the memory This is important to note if you want to execute the same discipline multiple times, you shall use multiprocessing.
By default it is set to False.
wait_time_between_fork (float) –
The time waited between two forks of the process / thread.
By default it is set to 0.
auto_set_step (bool) –
Whether to compute the optimal step for a forward first order finite differences gradient approximation.
By default it is set to False.
plot_result (bool) –
Whether to plot the result of the validation (computed vs approximated Jacobians).
By default it is set to False.
file_path (str | Path) –
The path to the output file if
plot_result
isTrue
.By default it is set to “jacobian_errors.pdf”.
show (bool) –
Whether to open the figure.
By default it is set to False.
fig_size_x (float) –
The x-size of the figure in inches.
By default it is set to 10.
fig_size_y (float) –
The y-size of the figure in inches.
By default it is set to 10.
reference_jacobian_path (str | Path | None) – The path of the reference Jacobian file.
save_reference_jacobian (bool) –
Whether to save the reference Jacobian.
By default it is set to False.
indices (Iterable[int] | None) – The indices of the inputs and outputs for the different sub-Jacobian matrices, formatted as
{variable_name: variable_components}
wherevariable_components
can be either an integer, e.g. 2 a sequence of integers, e.g. [0, 3], a slice, e.g. slice(0,3), the ellipsis symbol (…) or None, which is the same as ellipsis. If a variable name is missing, consider all its components. If None, consider all the components of all theinputs
andoutputs
.
- Returns:
Whether the analytical Jacobian is correct with respect to the reference one.
- check_output_data(raise_exception=True)¶
Check the output data validity.
- Parameters:
raise_exception (bool) –
Whether to raise an exception when the data is invalid.
By default it is set to True.
- Return type:
None
- classmethod deactivate_time_stamps()¶
Deactivate the time stamps.
For storing start and end times of execution and linearizations.
- Return type:
None
- static deserialize(file_path)¶
Deserialize a discipline from a file.
- Parameters:
file_path (str | Path) – The path to the file containing the discipline.
- Returns:
The discipline instance.
- Return type:
- execute(input_data=None)¶
Execute the discipline.
This method executes the discipline:
Adds the default inputs to the
input_data
if some inputs are not defined in input_data but exist inMDODiscipline.default_inputs
.Checks whether the last execution of the discipline was called with identical inputs, i.e. cached in
MDODiscipline.cache
; if so, directly returnsself.cache.get_output_cache(inputs)
.Caches the inputs.
Checks the input data against
MDODiscipline.input_grammar
.If
MDODiscipline.data_processor
is not None, runs the preprocessor.Updates the status to
MDODiscipline.STATUS_RUNNING
.Calls the
MDODiscipline._run()
method, that shall be defined.If
MDODiscipline.data_processor
is not None, runs the postprocessor.Checks the output data.
Caches the outputs.
Updates the status to
MDODiscipline.STATUS_DONE
orMDODiscipline.STATUS_FAILED
.Updates summed execution time.
- Parameters:
input_data (Mapping[str, Any] | None) – The input data needed to execute the discipline according to the discipline input grammar. If None, use the
MDODiscipline.default_inputs
.- Returns:
The discipline local data after execution.
- Raises:
RuntimeError – When residual_variables are declared but self.run_solves_residuals is False. This is not supported yet.
- Return type:
- get_all_inputs()¶
Return the local input data as a list.
The order is given by
MDODiscipline.get_input_data_names()
.
- get_all_outputs()¶
Return the local output data as a list.
The order is given by
MDODiscipline.get_output_data_names()
.
- get_attributes_to_serialize()¶
Define the names of the attributes to be serialized.
Shall be overloaded by disciplines
- static get_data_list_from_dict(keys, data_dict)¶
Filter the dict from a list of keys or a single key.
If keys is a string, then the method return the value associated to the key. If keys is a list of strings, then the method returns a generator of value corresponding to the keys which can be iterated.
- get_disciplines_in_dataflow_chain()¶
Return the disciplines that must be shown as blocks in the XDSM.
By default, only the discipline itself is shown. This function can be differently implemented for any type of inherited discipline.
- Returns:
The disciplines shown in the XDSM chain.
- Return type:
- get_expected_dataflow()¶
Return the expected data exchange sequence.
This method is used for the XDSM representation.
The default expected data exchange sequence is an empty list.
See also
MDOFormulation.get_expected_dataflow
- Returns:
The data exchange arcs.
- Return type:
list[tuple[gemseo.core.discipline.MDODiscipline, gemseo.core.discipline.MDODiscipline, list[str]]]
- get_expected_workflow()¶
Return the expected execution sequence.
This method is used for the XDSM representation.
The default expected execution sequence is the execution of the discipline itself.
See also
MDOFormulation.get_expected_workflow
- Returns:
The expected execution sequence.
- Return type:
- get_input_data(with_namespaces=True)¶
Return the local input data as a dictionary.
- get_input_data_names(with_namespaces=True)¶
Return the names of the input variables.
- get_input_output_data_names(with_namespaces=True)¶
Return the names of the input and output variables.
- Args:
- with_namespaces: Whether to keep the namespace prefix of the
output names, if any.
- get_inputs_asarray()¶
Return the local output data as a large NumPy array.
The order is the one of
MDODiscipline.get_all_outputs()
.- Returns:
The local output data.
- Return type:
- get_inputs_by_name(data_names)¶
Return the local data associated with input variables.
- Parameters:
data_names (Iterable[str]) – The names of the input variables.
- Returns:
The local data for the given input variables.
- Raises:
ValueError – When a variable is not an input of the discipline.
- Return type:
- get_local_data_by_name(data_names)¶
Return the local data of the discipline associated with variables names.
- Parameters:
data_names (Iterable[str]) – The names of the variables.
- Returns:
The local data associated with the variables names.
- Raises:
ValueError – When a name is not a discipline input name.
- Return type:
Generator[Any]
- get_output_data(with_namespaces=True)¶
Return the local output data as a dictionary.
- get_output_data_names(with_namespaces=True)¶
Return the names of the output variables.
- get_outputs_asarray()¶
Return the local input data as a large NumPy array.
The order is the one of
MDODiscipline.get_all_inputs()
.- Returns:
The local input data.
- Return type:
- get_outputs_by_name(data_names)¶
Return the local data associated with output variables.
- Parameters:
data_names (Iterable[str]) – The names of the output variables.
- Returns:
The local data for the given output variables.
- Raises:
ValueError – When a variable is not an output of the discipline.
- Return type:
- static get_return_spec_fromstr(return_line)[source]¶
Return the output specifications of a Python function.
- get_sub_disciplines(recursive=False)¶
Determine the sub-disciplines.
This method lists the sub-disciplines’ disciplines. It will list up to one level of disciplines contained inside another one unless the
recursive
argument is set toTrue
.- Parameters:
recursive (bool) –
If
True
, the method will look inside any discipline that has other disciplines inside until it reaches a discipline without sub-disciplines, in this case the return value will not include any discipline that has sub-disciplines. IfFalse
, the method will list up to one level of disciplines contained inside another one, in this case the return value may include disciplines that contain sub-disciplines.By default it is set to False.
- Returns:
The sub-disciplines.
- Return type:
- is_all_inputs_existing(data_names)¶
Test if several variables are discipline inputs.
- is_all_outputs_existing(data_names)¶
Test if several variables are discipline outputs.
- is_input_existing(data_name)¶
Test if a variable is a discipline input.
- is_output_existing(data_name)¶
Test if a variable is a discipline output.
- linearize(input_data=None, force_all=False, force_no_exec=False)¶
Execute the linearized version of the code.
- Parameters:
input_data (Mapping[str, Any] | None) – The input data needed to linearize the discipline according to the discipline input grammar. If None, use the
MDODiscipline.default_inputs
.force_all (bool) –
If False,
MDODiscipline._differentiated_inputs
andMDODiscipline._differentiated_outputs
are used to filter the differentiated variables. otherwise, all outputs are differentiated wrt all inputs.By default it is set to False.
force_no_exec (bool) –
If True, the discipline is not re-executed, cache is loaded anyway.
By default it is set to False.
- Returns:
The Jacobian of the discipline.
- Return type:
- notify_status_observers()¶
Notify all status observers that the status has changed.
- Return type:
None
- remove_status_observer(obs)¶
Remove an observer for the status.
- Parameters:
obs (Any) – The observer to remove.
- Return type:
None
- reset_statuses_for_run()¶
Set all the statuses to
MDODiscipline.STATUS_PENDING
.- Raises:
ValueError – When the discipline cannot be run because of its status.
- Return type:
None
- serialize(file_path)¶
Serialize the discipline and store it in a file.
- Parameters:
file_path (str | Path) – The path to the file to store the discipline.
- Return type:
None
- set_cache_policy(cache_type='SimpleCache', cache_tolerance=0.0, cache_hdf_file=None, cache_hdf_node_name=None, is_memory_shared=True)¶
Set the type of cache to use and the tolerance level.
This method defines when the output data have to be cached according to the distance between the corresponding input data and the input data already cached for which output data are also cached.
The cache can be either a
SimpleCache
recording the last execution or a cache storing all executions, e.g.MemoryFullCache
andHDF5Cache
. Caching data can be either in-memory, e.g.SimpleCache
andMemoryFullCache
, or on the disk, e.g.HDF5Cache
.The attribute
CacheFactory.caches
provides the available caches types.- Parameters:
cache_type (str) –
The type of cache.
By default it is set to “SimpleCache”.
cache_tolerance (float) –
The maximum relative norm of the difference between two input arrays to consider that two input arrays are equal.
By default it is set to 0.0.
cache_hdf_file (str | Path | None) – The path to the HDF file to store the data; this argument is mandatory when the
MDODiscipline.HDF5_CACHE
policy is used.cache_hdf_node_name (str | None) – The name of the HDF file node to store the discipline data. If None,
MDODiscipline.name
is used.is_memory_shared (bool) –
Whether to store the data with a shared memory dictionary, which makes the cache compatible with multiprocessing.
By default it is set to True.
- Return type:
None
- set_disciplines_statuses(status)¶
Set the sub-disciplines statuses.
To be implemented in subclasses.
- Parameters:
status (str) – The status.
- Return type:
None
- set_jacobian_approximation(jac_approx_type='finite_differences', jax_approx_step=1e-07, jac_approx_n_processes=1, jac_approx_use_threading=False, jac_approx_wait_time=0)¶
Set the Jacobian approximation method.
Sets the linearization mode to approx_method, sets the parameters of the approximation for further use when calling
MDODiscipline.linearize()
.- Parameters:
jac_approx_type (str) –
The approximation method, either “complex_step” or “finite_differences”.
By default it is set to “finite_differences”.
jax_approx_step (float) –
The differentiation step.
By default it is set to 1e-07.
jac_approx_n_processes (int) –
The maximum simultaneous number of threads, if
jac_approx_use_threading
is True, or processes otherwise, used to parallelize the execution.By default it is set to 1.
jac_approx_use_threading (bool) –
Whether to use threads instead of processes to parallelize the execution; multiprocessing will copy (serialize) all the disciplines, while threading will share all the memory This is important to note if you want to execute the same discipline multiple times, you shall use multiprocessing.
By default it is set to False.
jac_approx_wait_time (float) –
The time waited between two forks of the process / thread.
By default it is set to 0.
- Return type:
None
- set_optimal_fd_step(outputs=None, inputs=None, force_all=False, print_errors=False, numerical_error=2.220446049250313e-16)¶
Compute the optimal finite-difference step.
Compute the optimal step for a forward first order finite differences gradient approximation. Requires a first evaluation of the perturbed functions values. The optimal step is reached when the truncation error (cut in the Taylor development), and the numerical cancellation errors (round-off when doing f(x+step)-f(x)) are approximately equal.
Warning
This calls the discipline execution twice per input variables.
See also
https://en.wikipedia.org/wiki/Numerical_differentiation and “Numerical Algorithms and Digital Representation”, Knut Morken , Chapter 11, “Numerical Differentiation”
- Parameters:
inputs (Iterable[str] | None) – The inputs wrt which the outputs are linearized. If None, use the
MDODiscipline._differentiated_inputs
.outputs (Iterable[str] | None) – The outputs to be linearized. If None, use the
MDODiscipline._differentiated_outputs
.force_all (bool) –
Whether to consider all the inputs and outputs of the discipline;
By default it is set to False.
print_errors (bool) –
Whether to display the estimated errors.
By default it is set to False.
numerical_error (float) –
The numerical error associated to the calculation of f. By default, this is the machine epsilon (appx 1e-16), but can be higher when the calculation of f requires a numerical resolution.
By default it is set to 2.220446049250313e-16.
- Returns:
The estimated errors of truncation and cancellation error.
- Raises:
ValueError – When the Jacobian approximation method has not been set.
- store_local_data(**kwargs)¶
Store discipline data in local data.
- Parameters:
**kwargs (Any) – The data to be stored in
MDODiscipline.local_data
.- Return type:
None
- APPROX_MODES = ['finite_differences', 'complex_step']¶
- AVAILABLE_MODES = ('auto', 'direct', 'adjoint', 'reverse', 'finite_differences', 'complex_step')¶
- AVAILABLE_STATUSES = ['DONE', 'FAILED', 'PENDING', 'RUNNING', 'VIRTUAL', 'LINEARIZE']¶
- COMPLEX_STEP = 'complex_step'¶
- FINITE_DIFFERENCES = 'finite_differences'¶
- GRAMMAR_DIRECTORY: ClassVar[str | None] = None¶
The directory in which to search for the grammar files if not the class one.
- HDF5_CACHE = 'HDF5Cache'¶
- JSON_GRAMMAR_TYPE = 'JSONGrammar'¶
- MEMORY_FULL_CACHE = 'MemoryFullCache'¶
- N_CPUS = 2¶
- RE_EXECUTE_DONE_POLICY = 'RE_EXEC_DONE'¶
- RE_EXECUTE_NEVER_POLICY = 'RE_EXEC_NEVER'¶
- SIMPLE_CACHE = 'SimpleCache'¶
- SIMPLE_GRAMMAR_TYPE = 'SimpleGrammar'¶
- STATUS_DONE = 'DONE'¶
- STATUS_FAILED = 'FAILED'¶
- STATUS_LINEARIZE = 'LINEARIZE'¶
- STATUS_PENDING = 'PENDING'¶
- STATUS_RUNNING = 'RUNNING'¶
- STATUS_VIRTUAL = 'VIRTUAL'¶
- activate_counters: ClassVar[bool] = True¶
Whether to activate the counters (execution time, calls and linearizations).
- activate_input_data_check: ClassVar[bool] = True¶
Whether to check the input data respect the input grammar.
- activate_output_data_check: ClassVar[bool] = True¶
Whether to check the output data respect the output grammar.
- cache: AbstractCache | None¶
The cache containing one or several executions of the discipline according to the cache policy.
- property cache_tol: float¶
The cache input tolerance.
This is the tolerance for equality of the inputs in the cache. If norm(stored_input_data-input_data) <= cache_tol * norm(stored_input_data), the cached data for
stored_input_data
is returned when callingself.execute(input_data)
.- Raises:
ValueError – When the discipline does not have a cache.
- data_processor: AutoDiscDataProcessor¶
A data processor forcing input data to float and output data to arrays.
- property default_inputs: dict[str, Any]¶
The default inputs.
- Raises:
TypeError – When the default inputs are not passed as a dictionary.
- property disciplines: list[gemseo.core.discipline.MDODiscipline]¶
The sub-disciplines, if any.
- property exec_time: float | None¶
The cumulated execution time of the discipline.
This property is multiprocessing safe.
- Raises:
RuntimeError – When the discipline counters are disabled.
- input_grammar: BaseGrammar¶
The input grammar.
- jac: dict[str, dict[str, ndarray]]¶
{input:
matrix}}``.
- Type:
The Jacobians of the outputs wrt inputs of the form ``{output
- property linearization_mode: str¶
The linearization mode among
MDODiscipline.AVAILABLE_MODES
.- Raises:
ValueError – When the linearization mode is unknown.
- property local_data: DisciplineData¶
The current input and output data.
- property n_calls: int | None¶
The number of times the discipline was executed.
This property is multiprocessing safe.
- Raises:
RuntimeError – When the discipline counters are disabled.
- property n_calls_linearize: int | None¶
The number of times the discipline was linearized.
This property is multiprocessing safe.
- Raises:
RuntimeError – When the discipline counters are disabled.
- output_grammar: BaseGrammar¶
The output grammar.
- py_func: Callable[[DataType, ..., DataType], DataType]¶
The Python function to compute the outputs from the inputs.
- py_jac: Callable[[DataType, ..., DataType], ndarray] | None¶
The Python function to compute the Jacobian from the inputs.
- residual_variables: Mapping[str, str]¶
The output variables mapping to their inputs, to be considered as residuals; they shall be equal to zero.
- property status: str¶
The status of the discipline.
The status aims at monitoring the process and give the user a simplified view on the state (the process state = execution or linearize or done) of the disciplines. The core part of the execution is _run, the core part of linearize is _compute_jacobian or approximate jacobian computation.
- time_stamps = None¶
- gemseo.disciplines.auto_py.to_arrays_dict(data)[source]¶
Ensure that the values of a dictionary are NumPy arrays.
- Parameters:
data (dict[str, Union[float, numpy.ndarray]]) – The dictionary whose values must be NumPy arrays.
- Returns:
The dictionary with NumPy arrays as values.
- Return type: