.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/post_process/algorithms/plot_robustness.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_post_process_algorithms_plot_robustness.py: Robustness ========== In this example, we illustrate the use of the :class:`.Robustness` plot on the Sobieski's SSBJ problem. .. GENERATED FROM PYTHON SOURCE LINES 28-35 .. code-block:: default from __future__ import annotations from gemseo import configure_logger from gemseo import create_discipline from gemseo import create_scenario from gemseo.problems.sobieski.core.problem import SobieskiProblem .. GENERATED FROM PYTHON SOURCE LINES 36-40 Import ------ The first step is to import some high-level functions and a method to get the design space. .. GENERATED FROM PYTHON SOURCE LINES 40-43 .. code-block:: default configure_logger() .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 44-59 Description ----------- In the :class:`.Robustness` post-processing, the robustness of the optimum is represented by a box plot. Using the quadratic approximations of all the output functions, we propagate analytically a normal distribution with 1% standard deviation on all the design variables, assuming no cross-correlations of inputs, to obtain the mean and standard deviation of the resulting normal distribution. A series of samples are randomly generated from the resulting distribution, whose quartiles are plotted, relatively to the values of the function at the optimum. For each function (in abscissa), the plot shows the extreme values encountered in the samples (top and bottom bars). Then, 95% of the values are within the blue boxes. The average is given by the red bar. .. GENERATED FROM PYTHON SOURCE LINES 61-65 Create disciplines ------------------ At this point, we instantiate the disciplines of Sobieski's SSBJ problem: Propulsion, Aerodynamics, Structure and Mission .. GENERATED FROM PYTHON SOURCE LINES 65-74 .. code-block:: default disciplines = create_discipline( [ "SobieskiPropulsion", "SobieskiAerodynamics", "SobieskiStructure", "SobieskiMission", ] ) .. GENERATED FROM PYTHON SOURCE LINES 75-78 Create design space ------------------- We also read the design space from the :class:`.SobieskiProblem`. .. GENERATED FROM PYTHON SOURCE LINES 78-80 .. code-block:: default design_space = SobieskiProblem().design_space .. GENERATED FROM PYTHON SOURCE LINES 81-88 Create and execute scenario --------------------------- The next step is to build an MDO scenario in order to maximize the range, encoded 'y_4', with respect to the design parameters, while satisfying the inequality constraints 'g_1', 'g_2' and 'g_3'. We can use the MDF formulation, the SLSQP optimization algorithm and a maximum number of iterations equal to 100. .. GENERATED FROM PYTHON SOURCE LINES 88-100 .. code-block:: default scenario = create_scenario( disciplines, formulation="MDF", objective_name="y_4", maximize_objective=True, design_space=design_space, ) scenario.set_differentiation_method() for constraint in ["g_1", "g_2", "g_3"]: scenario.add_constraint(constraint, "ineq") scenario.execute({"algo": "SLSQP", "max_iter": 10}) .. rst-class:: sphx-glr-script-out .. code-block:: none INFO - 16:25:10: INFO - 16:25:10: *** Start MDOScenario execution *** INFO - 16:25:10: MDOScenario INFO - 16:25:10: Disciplines: SobieskiAerodynamics SobieskiMission SobieskiPropulsion SobieskiStructure INFO - 16:25:10: MDO formulation: MDF INFO - 16:25:10: Optimization problem: INFO - 16:25:10: minimize -y_4(x_shared, x_1, x_2, x_3) INFO - 16:25:10: with respect to x_1, x_2, x_3, x_shared INFO - 16:25:10: subject to constraints: INFO - 16:25:10: g_1(x_shared, x_1, x_2, x_3) <= 0.0 INFO - 16:25:10: g_2(x_shared, x_1, x_2, x_3) <= 0.0 INFO - 16:25:10: g_3(x_shared, x_1, x_2, x_3) <= 0.0 INFO - 16:25:10: over the design space: INFO - 16:25:10: +-------------+-------------+-------+-------------+-------+ INFO - 16:25:10: | name | lower_bound | value | upper_bound | type | INFO - 16:25:10: +-------------+-------------+-------+-------------+-------+ INFO - 16:25:10: | x_shared[0] | 0.01 | 0.05 | 0.09 | float | INFO - 16:25:10: | x_shared[1] | 30000 | 45000 | 60000 | float | INFO - 16:25:10: | x_shared[2] | 1.4 | 1.6 | 1.8 | float | INFO - 16:25:10: | x_shared[3] | 2.5 | 5.5 | 8.5 | float | INFO - 16:25:10: | x_shared[4] | 40 | 55 | 70 | float | INFO - 16:25:10: | x_shared[5] | 500 | 1000 | 1500 | float | INFO - 16:25:10: | x_1[0] | 0.1 | 0.25 | 0.4 | float | INFO - 16:25:10: | x_1[1] | 0.75 | 1 | 1.25 | float | INFO - 16:25:10: | x_2 | 0.75 | 1 | 1.25 | float | INFO - 16:25:10: | x_3 | 0.1 | 0.5 | 1 | float | INFO - 16:25:10: +-------------+-------------+-------+-------------+-------+ INFO - 16:25:10: Solving optimization problem with algorithm SLSQP: INFO - 16:25:10: ... 0%| | 0/10 [00:00 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 1.573 seconds) .. _sphx_glr_download_examples_post_process_algorithms_plot_robustness.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_robustness.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_robustness.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_