.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/post_process/algorithms/plot_quad_approx.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_post_process_algorithms_plot_quad_approx.py: Quadratic approximations ======================== In this example, we illustrate the use of the :class:`.QuadApprox` plot on the Sobieski's SSBJ problem. .. GENERATED FROM PYTHON SOURCE LINES 28-35 .. code-block:: default from __future__ import annotations from gemseo import configure_logger from gemseo import create_discipline from gemseo import create_scenario from gemseo.problems.sobieski.core.problem import SobieskiProblem .. GENERATED FROM PYTHON SOURCE LINES 36-40 Import ------ The first step is to import some high-level functions and a method to get the design space. .. GENERATED FROM PYTHON SOURCE LINES 40-43 .. code-block:: default configure_logger() .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 44-51 Description ----------- The :class:`.QuadApprox` post-processing performs a quadratic approximation of a given function from an optimization history and plot the results as cuts of the approximation. .. GENERATED FROM PYTHON SOURCE LINES 53-57 Create disciplines ------------------ Then, we instantiate the disciplines of the Sobieski's SSBJ problem: Propulsion, Aerodynamics, Structure and Mission .. GENERATED FROM PYTHON SOURCE LINES 57-66 .. code-block:: default disciplines = create_discipline( [ "SobieskiPropulsion", "SobieskiAerodynamics", "SobieskiStructure", "SobieskiMission", ] ) .. GENERATED FROM PYTHON SOURCE LINES 67-70 Create design space ------------------- We also read the design space from the :class:`.SobieskiProblem`. .. GENERATED FROM PYTHON SOURCE LINES 70-72 .. code-block:: default design_space = SobieskiProblem().design_space .. GENERATED FROM PYTHON SOURCE LINES 73-80 Create and execute scenario --------------------------- The next step is to build an MDO scenario in order to maximize the range, encoded 'y_4', with respect to the design parameters, while satisfying the inequality constraints 'g_1', 'g_2' and 'g_3'. We can use the MDF formulation, the SLSQP optimization algorithm and a maximum number of iterations equal to 100. .. GENERATED FROM PYTHON SOURCE LINES 80-92 .. code-block:: default scenario = create_scenario( disciplines, formulation="MDF", objective_name="y_4", maximize_objective=True, design_space=design_space, ) scenario.set_differentiation_method() for constraint in ["g_1", "g_2", "g_3"]: scenario.add_constraint(constraint, "ineq") scenario.execute({"algo": "SLSQP", "max_iter": 10}) .. rst-class:: sphx-glr-script-out .. code-block:: none INFO - 08:27:57: INFO - 08:27:57: *** Start MDOScenario execution *** INFO - 08:27:57: MDOScenario INFO - 08:27:57: Disciplines: SobieskiAerodynamics SobieskiMission SobieskiPropulsion SobieskiStructure INFO - 08:27:57: MDO formulation: MDF INFO - 08:27:57: Optimization problem: INFO - 08:27:57: minimize -y_4(x_shared, x_1, x_2, x_3) INFO - 08:27:57: with respect to x_1, x_2, x_3, x_shared INFO - 08:27:57: subject to constraints: INFO - 08:27:57: g_1(x_shared, x_1, x_2, x_3) <= 0.0 INFO - 08:27:57: g_2(x_shared, x_1, x_2, x_3) <= 0.0 INFO - 08:27:57: g_3(x_shared, x_1, x_2, x_3) <= 0.0 INFO - 08:27:57: over the design space: INFO - 08:27:57: +-------------+-------------+-------+-------------+-------+ INFO - 08:27:57: | name | lower_bound | value | upper_bound | type | INFO - 08:27:57: +-------------+-------------+-------+-------------+-------+ INFO - 08:27:57: | x_shared[0] | 0.01 | 0.05 | 0.09 | float | INFO - 08:27:57: | x_shared[1] | 30000 | 45000 | 60000 | float | INFO - 08:27:57: | x_shared[2] | 1.4 | 1.6 | 1.8 | float | INFO - 08:27:57: | x_shared[3] | 2.5 | 5.5 | 8.5 | float | INFO - 08:27:57: | x_shared[4] | 40 | 55 | 70 | float | INFO - 08:27:57: | x_shared[5] | 500 | 1000 | 1500 | float | INFO - 08:27:57: | x_1[0] | 0.1 | 0.25 | 0.4 | float | INFO - 08:27:57: | x_1[1] | 0.75 | 1 | 1.25 | float | INFO - 08:27:57: | x_2 | 0.75 | 1 | 1.25 | float | INFO - 08:27:57: | x_3 | 0.1 | 0.5 | 1 | float | INFO - 08:27:57: +-------------+-------------+-------+-------------+-------+ INFO - 08:27:57: Solving optimization problem with algorithm SLSQP: INFO - 08:27:57: ... 0%| | 0/10 [00:00 .. GENERATED FROM PYTHON SOURCE LINES 127-137 The second plot represents the quadratic approximation of the objective around the optimal solution : :math:`a_{i}(t)=0.5 (t-x^*_i)^2 \frac{\partial^2 f}{\partial x_i^2} + (t-x^*_i) \frac{\partial f}{\partial x_i} + f(x^*)`, where :math:`x^*` is the optimal solution. This approximation highlights the sensitivity of the :term:`objective function` with respect to the :term:`design variables`: we notice that the design variables :math:`x\_1, x\_5, x\_6` have little influence , whereas :math:`x\_0, x\_2, x\_9` have a huge influence on the objective. This trend is also noted in the diagonal terms of the :term:`Hessian` matrix :math:`\frac{\partial^2 f}{\partial x_i^2}`. .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.826 seconds) .. _sphx_glr_download_examples_post_process_algorithms_plot_quad_approx.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_quad_approx.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_quad_approx.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_