Source code for gemseo.algos.opt.augmented_lagrangian.augmented_lagrangian_order_1
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""Augmented Lagrangian of order 1."""
from __future__ import annotations
from typing import TYPE_CHECKING
from typing import Any
from typing import ClassVar
from gemseo.algos.lagrange_multipliers import LagrangeMultipliers
from gemseo.algos.opt.augmented_lagrangian.penalty_heuristic import (
AugmentedLagrangianPenaltyHeuristic,
)
from gemseo.algos.opt.augmented_lagrangian.settings.augmented_lagrangian_order_1_settings import ( # noqa: E501
Augmented_Lagrangian_order_1_Settings,
)
from gemseo.algos.opt.base_optimization_library import OptimizationAlgorithmDescription
if TYPE_CHECKING:
from gemseo import OptimizationProblem
from gemseo import OptimizationResult
from gemseo.typing import NumberArray
[docs]
class AugmentedLagrangianOrder1(AugmentedLagrangianPenaltyHeuristic):
"""An augmented Lagrangian algorithm of order 1.
The Lagrange multipliers are updated using gradient information
computed using the :class:`.LagrangeMultipliers` class.
"""
__lagrange_multiplier_calculator: LagrangeMultipliers
"""The Lagrange multiplier calculator."""
ALGORITHM_INFOS: ClassVar[dict[str, OptimizationAlgorithmDescription]] = {
"Augmented_Lagrangian_order_1": OptimizationAlgorithmDescription(
algorithm_name="Augmented_Lagrangian_order_1",
description="Augmented Lagrangian algorithm using gradient information",
internal_algorithm_name="Augmented_Lagrangian",
handle_equality_constraints=True,
handle_inequality_constraints=True,
require_gradient=True,
Settings=Augmented_Lagrangian_order_1_Settings,
),
}
def __init__(self, algo_name: str = "Augmented_Lagrangian_order_1") -> None: # noqa:D107
super().__init__(algo_name)
self.__lagrange_multiplier_calculator = None
def _post_run(
self,
problem: OptimizationProblem,
result: OptimizationResult,
max_design_space_dimension_to_log: int,
**settings: Any,
) -> None:
super()._post_run(
problem, result, max_design_space_dimension_to_log, **settings
)
# Reset this cached attribute since an algorithm shall be stateless to take
# full advantage of the algorithm factory cache.
self.__lagrange_multiplier_calculator = None
def _update_lagrange_multipliers(
self,
eq_lag: dict[str, NumberArray],
ineq_lag: dict[str, NumberArray],
x_opt: NumberArray,
) -> None: # noqa:D107
if self.__lagrange_multiplier_calculator is None:
self.__lagrange_multiplier_calculator = LagrangeMultipliers(self._problem)
self.__lagrange_multiplier_calculator.compute(x_opt)
lag_ms = self.__lagrange_multiplier_calculator.get_multipliers_arrays()
for constraint in self._problem.constraints.get_equality_constraints():
eq_lag[constraint.name] = lag_ms[LagrangeMultipliers.EQUALITY][
constraint.name
]
for constraint in self._problem.constraints.get_inequality_constraints():
ineq_lag[constraint.name] = lag_ms[LagrangeMultipliers.INEQUALITY][
constraint.name
]