Source code for gemseo.algos.opt.scipy_local.settings.nelder_mead

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
"""Settings for the SciPy Nelder-Mead algorithm."""

from __future__ import annotations

from collections.abc import Sequence  # noqa: TC003
from typing import Any
from typing import ClassVar

from numpy import asarray
from pydantic import Field
from pydantic import model_validator

from gemseo.algos.opt.scipy_local.settings.base_scipy_local_settings import (
    BaseScipyLocalSettings,
)
from gemseo.utils.pydantic_ndarray import NDArrayPydantic  # noqa: TC001


[docs] class NELDER_MEAD_Settings(BaseScipyLocalSettings): # noqa: N801 """Settings for the SciPy Nelder-Mead algorithm.""" _TARGET_CLASS_NAME = "NELDER-MEAD" return_all: bool = Field( default=False, description=( "Whether to return a list of the best solution at each of the iterations." ), ) initial_simplex: Sequence[float] | NDArrayPydantic[float] | None = Field( default=None, description="""The initial simplex. If provided, the expected shape is `(N+1, N)` where `N` is the problem dimension.""", ) adaptive: bool = Field( default=False, description=( "Whether to adapt the algorithm parameters to dimensionality of problem." ), ) _redundant_settings: ClassVar[list[str]] = ["maxiter", "maxfev"] @model_validator(mode="before") @classmethod def check_initial_simplex(cls, data: Any) -> Any: """Cast the initial simplex as a NumPy array if relevant.""" if "initial_simplex" in data and data["initial_simplex"] is not None: data["initial_simplex"] = asarray(data["initial_simplex"]) return data