Source code for gemseo.core.mdo_functions.discipline_adapter

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# Contributors:
#    INITIAL AUTHORS - initial API and implementation and/or initial
#                        documentation
#        :author: Francois Gallard, Charlie Vanaret
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""A function computing some outputs of a discipline from some of its inputs."""

from __future__ import annotations

from typing import TYPE_CHECKING

from numpy import array
from numpy import empty
from numpy import ndarray

from gemseo.core.execution_status import ExecutionStatus
from gemseo.core.mdo_functions.mdo_function import MDOFunction
from gemseo.utils.compatibility.scipy import get_row
from gemseo.utils.compatibility.scipy import sparse_classes
from gemseo.utils.constants import READ_ONLY_EMPTY_DICT

if TYPE_CHECKING:
    from collections.abc import MutableMapping
    from collections.abc import Sequence

    from gemseo.core.discipline import Discipline
    from gemseo.core.grammars.defaults import Defaults
    from gemseo.typing import JacobianData
    from gemseo.typing import NumberArray
    from gemseo.typing import StrKeyMapping


[docs] class DisciplineAdapter(MDOFunction): """An :class:`.MDOFunction` executing a discipline for some inputs and outputs.""" __is_linear: bool """Whether the function is linear.""" __input_dimension: int | None """The input variable dimension, needed for linear candidates.""" differentiated_input_names_substitute: Sequence[str] """The names of the inputs with respect to which to differentiate the functions. If empty, consider the variables of their input space. """ def __init__( self, input_names: Sequence[str], output_names: Sequence[str], default_input_data: Defaults, discipline: Discipline, names_to_sizes: MutableMapping[str, int] = READ_ONLY_EMPTY_DICT, differentiated_input_names_substitute: Sequence[str] = (), ) -> None: """ Args: input_names: The names of the inputs. output_names: The names of the outputs. default_input_data: The default input values to overload the ones of the discipline at each evaluation of the outputs with :meth:`._fun` or their derivatives with :meth:`._jac`. If empty, do not overload them. discipline: The discipline to be adapted. names_to_sizes: The sizes of the input variables. If empty, determine them from the default inputs and local data of the discipline :class:`.Discipline`. differentiated_input_names_substitute: The names of the inputs with respect to which to differentiate the functions. If empty, consider the variables of their input space. """ # noqa: D205, D212, D415 super().__init__( self._func_to_wrap, jac=self._jac_to_wrap, name="_".join(output_names), input_names=input_names, output_names=output_names, ) self.differentiated_input_names_substitute = ( differentiated_input_names_substitute or input_names ) self.__default_inputs = default_input_data self.__input_size = 0 self.__differentiated_input_size = 0 self.__output_names_to_slices = {} self.__jacobian = array(()) self.__discipline = discipline self.__input_names_to_slices = {} self.__input_names_to_sizes = names_to_sizes or {} self.__differentiated_input_names_to_slices = {} input_names = set(self.input_names) self.__is_linear = self.__discipline.io.have_linear_relationships( input_names, output_names ) self.__input_dimension = self.__compute_input_dimension(default_input_data) self.__convert_array_to_data = ( discipline.io.input_grammar.data_converter.convert_array_to_data ) @property def is_linear(self) -> bool: # noqa: D102 return self.__is_linear @property def input_dimension(self) -> int | None: # noqa: D102 return self.__input_dimension def __compute_input_dimension( self, default_input_data: Defaults, ) -> int | None: """Compute the input dimension. Args: default_input_data: : The default input values to overload the ones of the discipline at each evaluation of the outputs with :meth:`._fun` or their derivatives with :meth:`._jac`. If ``None``, do not overload them. Returns: The input dimension. """ get_value_size = ( self.__discipline.io.input_grammar.data_converter.get_value_size ) if default_input_data and all( name in default_input_data for name in self.input_names ): return sum( get_value_size(input_name, default_input_data[input_name]) for input_name in self.input_names ) if len(self.__input_names_to_sizes) > 0: return sum(self.__input_names_to_sizes.values()) default_input_data = self.__discipline.io.input_grammar.defaults if all(name in default_input_data for name in self.input_names): return sum( get_value_size(input_name, default_input_data[input_name]) for input_name in self.input_names ) # TODO: document what None means. We could use 0 instead. return None def __create_output_names_to_slices(self, jacobians: JacobianData) -> int: """Compute the indices of the input variables in the Jacobian array. Args: jacobians: The Jacobians data used to compute the slices. Returns: The size of the inputs. """ self.__output_names_to_slices = output_names_to_slices = {} start = 0 output_size = 0 for output_name in self.output_names: input_name = next(iter(jacobians[output_name])) output_size += jacobians[output_name][input_name].shape[0] output_names_to_slices[output_name] = slice(start, output_size) start = output_size return output_size def _func_to_wrap(self, x_vect: NumberArray) -> complex | NumberArray: """Compute an output vector from an input one. Args: x_vect: The input vector. Returns: The output vector or a scalar if the vector has only one component. """ self.__discipline.execution_status.value = ExecutionStatus.Status.DONE input_data = self.__create_discipline_input_data(x_vect) output_data = self.__discipline.execute(input_data) return self._convert_output_data_to_array(output_data) def _convert_output_data_to_array( self, output_data: StrKeyMapping ) -> complex | NumberArray: """Convert the discipline's output data to array/scalar. Args: output_data: The discipline's output data. Returns: The vector or scalar of output data. """ output_vector = ( self.__discipline.io.output_grammar.data_converter.convert_data_to_array( self.output_names, output_data ) ) if output_vector.size == 1: # The function is scalar. return output_vector[0] return output_vector def _jac_to_wrap(self, x_vect: NumberArray) -> NumberArray: """Compute the Jacobian value from an input vector. Args: x_vect: The input vector. Returns: The Jacobian value. """ input_data = self.__create_discipline_input_data(x_vect) jacobians = self.__discipline.linearize(input_data) return self._convert_jacobian_to_array(jacobians) def _convert_jacobian_to_array(self, jacobians: JacobianData) -> NumberArray: """Convert the discipline's Jacobians to array. Args: jacobians: The discipline's Jacobians data. Returns: The aggregated Jacobian as a NumPy array. """ if len(self.__jacobian) == 0: output_size = self.__create_output_names_to_slices(jacobians) if output_size == 1: shape = self.__differentiated_input_size else: shape = (output_size, self.__differentiated_input_size) self.__jacobian = empty(shape) if self.__jacobian.ndim == 1 or self.__jacobian.shape[0] == 1: output_name = self.output_names[0] jac_output = jacobians[output_name] for input_name in self.differentiated_input_names_substitute: input_slice = self.__differentiated_input_names_to_slices[input_name] jac = jac_output[input_name] # TODO: This precaution is meant to disappear when sparse 1-D array will # be available. This is also mandatory since self.__jacobian is # initialized as a dense array. if isinstance(jac, sparse_classes): first_row = get_row(jac, 0).todense().flatten() else: first_row = jac[0, :] self.__jacobian[input_slice] = first_row else: for output_name in self.output_names: output_slice = self.__output_names_to_slices[output_name] jac_output = jacobians[output_name] for input_name in self.differentiated_input_names_substitute: input_slice = self.__differentiated_input_names_to_slices[ input_name ] jac = jac_output[input_name] # TODO: This is mandatory since self.__jacobian is initialized as a # dense array. Performance improvement could be obtained if one is # able to infer the type of jac. if isinstance(jac, sparse_classes): jac = jac.toarray() self.__jacobian[output_slice, input_slice] = jac return self.__jacobian def __create_input_names_to_slices(self) -> None: """Create the map from discipline input names to input vector slices. Raises: ValueError: When a discipline input has no default value. """ input_data = self.__discipline.io.get_input_data() input_data.update(self.__discipline.io.input_grammar.defaults) self.__input_names_to_sizes.update( self.__discipline.io.input_grammar.data_converter.compute_names_to_sizes( input_data.keys(), input_data ) ) missing_names = ( set(self.input_names) .difference(self.__input_names_to_sizes.keys()) .difference(input_data.keys()) ) if missing_names: msg = ( f"The size of the input {','.join(missing_names)} cannot be guessed " f"from the discipline {self.__discipline.name}, " f"nor from its default inputs or from its local data." ) raise ValueError(msg) ( self.__input_names_to_slices, self.__input_size, ) = self.__discipline.io.input_grammar.data_converter.compute_names_to_slices( self.input_names, input_data, self.__input_names_to_sizes ) ( self.__differentiated_input_names_to_slices, self.__differentiated_input_size, ) = self.__discipline.io.input_grammar.data_converter.compute_names_to_slices( self.differentiated_input_names_substitute, input_data, self.__input_names_to_sizes, ) def __create_discipline_input_data( self, x_vect: ndarray, ) -> dict[str, ndarray]: """Create the discipline input data from the function input vector. The variables in the input data are cast according to the types defined in the design space. Args: x_vect: The input vector of the function. Returns: The input data of the discipline. """ if self.__default_inputs: self.__discipline.io.input_grammar.defaults.update(self.__default_inputs) if not self.__input_names_to_slices: self.__create_input_names_to_slices() input_data = ( self.__discipline.io.input_grammar.data_converter.convert_array_to_data( x_vect, self.__input_names_to_slices ) ) variable_types = x_vect.dtype.metadata if variable_types is not None: # Restore the proper data types as declared in the design space. for name, type_ in variable_types.items(): input_data[name] = input_data[name].astype(type_, copy=False) return input_data