Source code for gemseo.core.mdofunctions.function_restriction

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
"""A function mapping another one from some input components."""
from __future__ import annotations

from typing import Sequence

from numpy import array
from numpy import empty
from numpy import ndarray

from gemseo.core.mdofunctions.mdo_function import ArrayType
from gemseo.core.mdofunctions.mdo_function import MDOFunction


[docs]class FunctionRestriction(MDOFunction): """Take an :class:`.MDOFunction` and apply a given restriction to its inputs.""" def __init__( self, frozen_indexes: ndarray[int], frozen_values: ArrayType, input_dim: int, mdo_function: MDOFunction, name: str | None = None, f_type: str | None = None, expr: str | None = None, args: Sequence[str] | None = None, ) -> None: """ Args: frozen_indexes: The indexes of the inputs that will be frozen frozen_values: The values of the inputs that will be frozen. input_dim: The dimension of input space of the function before restriction. name: The name of the function after restriction. If ``None``, create a default name based on the name of the current function and on the argument `args`. mdo_function: The function to restrict. f_type: The type of the function after restriction. If ``None``, the function will have no type. expr: The expression of the function after restriction. If ``None``, the function will have no expression. args: The names of the inputs of the function after restriction. If ``None``, the inputs of the function will have no names. Raises: ValueError: If the `frozen_indexes` and the `frozen_values` arrays do not have the same shape. """ # Check the shapes of the passed arrays if frozen_indexes.shape != frozen_values.shape: raise ValueError("Arrays of frozen indexes and values must have same shape") self.__frozen_indexes = frozen_indexes self.__frozen_values = frozen_values self.__input_dim = input_dim self.__mdo_function = mdo_function self.__name = name self.__f_type = f_type self.__expr = expr self.__args = args self._active_indexes = array( [i for i in range(self.__input_dim) if i not in self.__frozen_indexes] ) # Build the name of the restriction if self.__name is None and self.__args is not None: self.__name = "{}_wrt_{}".format( self.__mdo_function.name, "_".join(self.__args) ) elif name is None: self.__name = f"{self.__mdo_function.name}_restriction" if self.__mdo_function.has_jac(): jac = self._jac_to_wrap else: jac = self.__mdo_function.jac super().__init__( self._func_to_wrap, self.__name, self.__f_type, expr=self.__expr, args=self.__args, jac=jac, dim=self.__mdo_function.dim, outvars=self.__mdo_function.outvars, force_real=self.__mdo_function.force_real, ) def __extend_subvect(self, x_subvect: ArrayType) -> ArrayType: """Extend an input vector of the restriction with the frozen values. Args: x_subvect: The values of the inputs of the restriction. Returns: The extended input vector. """ x_vect = empty(self.__input_dim) x_vect[self._active_indexes] = x_subvect x_vect[self.__frozen_indexes] = self.__frozen_values return x_vect def _func_to_wrap(self, x_subvect: ArrayType) -> ArrayType: """Evaluate the restriction. Args: x_subvect: The value of the inputs of the restriction. Returns: The value of the outputs of the restriction. """ return self.__mdo_function.evaluate(self.__extend_subvect(x_subvect)) def _jac_to_wrap(self, x_subvect: ArrayType) -> ArrayType: """Compute the Jacobian matrix of the restriction. Args: x_subvect: The value of the inputs of the restriction. Returns: The Jacobian matrix of the restriction. """ return self.__mdo_function.jac(self.__extend_subvect(x_subvect))[ ..., self._active_indexes ]