Source code for gemseo.mlearning.regression.algos.gpr_settings

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
"""Settings of the Gaussian process regressor from scikit-learn."""

from __future__ import annotations

from collections.abc import Mapping  # noqa: TC003
from typing import Annotated
from typing import Callable

from pydantic import Field
from pydantic import NonNegativeInt
from pydantic import WithJsonSchema
from sklearn.gaussian_process.kernels import Kernel  # noqa: TC002

from gemseo.mlearning.regression.algos.base_regressor_settings import (
    BaseRegressorSettings,
)
from gemseo.utils.pydantic_ndarray import NDArrayPydantic  # noqa: TC001
from gemseo.utils.seeder import SEED


[docs] class GaussianProcessRegressor_Settings(BaseRegressorSettings): # noqa: N801 """The settings of the Gaussian process regressor from scikit-learn.""" kernel: Annotated[Kernel, WithJsonSchema({})] | None = Field( default=None, description="""The kernel specifying the covariance model. If ``None``, use a Matérn(2.5).""", ) bounds: tuple | tuple[float, float] | Mapping[str, tuple[float, float]] = Field( default=(), description="""The lower and upper bounds of the length scales. Either a unique lower-upper pair common to all the inputs or lower-upper pairs for some of them. When ``bounds`` is empty or when an input has no pair, the lower bound is 0.01 and the upper bound is 100. This argument is ignored when ``kernel`` is ``None``.""", ) alpha: float | NDArrayPydantic = Field( default=1e-10, description="The nugget effect to regularize the model." ) optimizer: str | Annotated[Callable, WithJsonSchema({})] = Field( default="fmin_l_bfgs_b", description="The optimization algorithm to find the parameter length scales.", ) n_restarts_optimizer: NonNegativeInt = Field( default=10, description="The number of restarts of the optimizer." ) random_state: NonNegativeInt | None = Field( default=SEED, description="""The random state parameter. If ``None``, use the global random state instance from ``numpy.random``. Creating the model multiple times will produce different results. If ``int``, use a new random number generator seeded by this integer. This will produce the same results.""", )