Source code for gemseo.uncertainty.distributions.openturns.log_normal

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# Contributors:
#    INITIAL AUTHORS - initial API and implementation and/or initial
#                           documentation
#        :author: Matthias De Lozzo
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""The OpenTURNS-based log-normal distribution."""

from __future__ import annotations

from gemseo.uncertainty.distributions._log_normal_utils import compute_mu_l_and_sigma_l
from gemseo.uncertainty.distributions.openturns.distribution import OTDistribution


[docs] class OTLogNormalDistribution(OTDistribution): """The OpenTURNS-based log-normal distribution.""" def __init__( self, mu: float = 1.0, sigma: float = 1.0, location: float = 0.0, set_log: bool = False, transformation: str = "", lower_bound: float | None = None, upper_bound: float | None = None, threshold: float = 0.5, ) -> None: """ Args: mu: Either the mean of the log-normal random variable or that of its logarithm when ``set_log`` is ``True``. sigma: Either the standard deviation of the log-normal random variable or that of its logarithm when ``set_log`` is ``True``. location: The location of the log-normal random variable. set_log: Whether ``mu`` and ``sigma`` apply to the logarithm of the log-normal random variable. Otherwise, ``mu`` and ``sigma`` apply to the log-normal random variable directly. """ # noqa: D205,D212,D415 if set_log: log_mu, log_sigma = mu, sigma else: log_mu, log_sigma = compute_mu_l_and_sigma_l(mu, sigma, location) super().__init__( interfaced_distribution="LogNormal", parameters=(log_mu, log_sigma, location), standard_parameters={self._MU: mu, self._SIGMA: sigma, self._LOC: location}, transformation=transformation, lower_bound=lower_bound, upper_bound=upper_bound, threshold=threshold, )