Source code for gemseo.uncertainty.distributions.scipy.log_normal
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""The SciPy-based log-normal distribution."""
from __future__ import annotations
from numpy import exp
from gemseo.uncertainty.distributions._log_normal_utils import compute_mu_l_and_sigma_l
from gemseo.uncertainty.distributions.scipy.distribution import SPDistribution
[docs]
class SPLogNormalDistribution(SPDistribution):
"""The SciPy-based log-normal distribution."""
def __init__(
self,
mu: float = 1.0,
sigma: float = 1.0,
location: float = 0.0,
set_log: bool = False,
) -> None:
"""
Args:
mu: Either the mean of the log-normal random variable
or that of its logarithm when ``set_log`` is ``True``.
sigma: Either the standard deviation of the log-normal random variable
or that of its logarithm when ``set_log`` is ``True``.
location: The location of the log-normal random variable.
set_log: Whether ``mu`` and ``sigma`` apply
to the logarithm of the log-normal random variable.
Otherwise,
``mu`` and ``sigma`` apply to the log-normal random variable directly.
""" # noqa: D205,D212,D415
if set_log:
log_mu, log_sigma = mu, sigma
else:
log_mu, log_sigma = compute_mu_l_and_sigma_l(mu, sigma, location)
super().__init__(
interfaced_distribution="lognorm",
parameters={"s": log_sigma, "loc": location, "scale": exp(log_mu)},
standard_parameters={self._MU: mu, self._SIGMA: sigma, self._LOC: location},
)