.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/mlearning/regression_model/plot_linear_regression.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_mlearning_regression_model_plot_linear_regression.py: Linear regression ================= We want to approximate a discipline with two inputs and two outputs: - :math:`y_1=1+2x_1+3x_2` - :math:`y_2=-1-2x_1-3x_2` over the unit hypercube :math:`[0,1]\times[0,1]`. .. GENERATED FROM PYTHON SOURCE LINES 34-36 Import ------ .. GENERATED FROM PYTHON SOURCE LINES 36-49 .. code-block:: Python from __future__ import annotations from numpy import array from gemseo import configure_logger from gemseo import create_design_space from gemseo import create_discipline from gemseo import create_scenario from gemseo.mlearning import create_regression_model configure_logger() .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 50-54 Create the discipline to learn ------------------------------ We can implement this analytic discipline by means of the :class:`.AnalyticDiscipline` class. .. GENERATED FROM PYTHON SOURCE LINES 54-59 .. code-block:: Python expressions = {"y_1": "1+2*x_1+3*x_2", "y_2": "-1-2*x_1-3*x_2"} discipline = create_discipline( "AnalyticDiscipline", name="func", expressions=expressions ) .. GENERATED FROM PYTHON SOURCE LINES 60-63 Create the input sampling space ------------------------------- We create the input sampling space by adding the variables one by one. .. GENERATED FROM PYTHON SOURCE LINES 63-67 .. code-block:: Python design_space = create_design_space() design_space.add_variable("x_1", l_b=0.0, u_b=1.0) design_space.add_variable("x_2", l_b=0.0, u_b=1.0) .. GENERATED FROM PYTHON SOURCE LINES 68-73 Create the learning set ----------------------- We can build a learning set by means of a :class:`.DOEScenario` with a full factorial design of experiments. The number of samples can be equal to 9 for example. .. GENERATED FROM PYTHON SOURCE LINES 73-78 .. code-block:: Python scenario = create_scenario( [discipline], "DisciplinaryOpt", "y_1", design_space, scenario_type="DOE" ) scenario.execute({"algo": "fullfact", "n_samples": 9}) .. rst-class:: sphx-glr-script-out .. code-block:: none INFO - 08:58:15: INFO - 08:58:15: *** Start DOEScenario execution *** INFO - 08:58:15: DOEScenario INFO - 08:58:15: Disciplines: func INFO - 08:58:15: MDO formulation: DisciplinaryOpt INFO - 08:58:15: Optimization problem: INFO - 08:58:15: minimize y_1(x_1, x_2) INFO - 08:58:15: with respect to x_1, x_2 INFO - 08:58:15: over the design space: INFO - 08:58:15: +------+-------------+-------+-------------+-------+ INFO - 08:58:15: | Name | Lower bound | Value | Upper bound | Type | INFO - 08:58:15: +------+-------------+-------+-------------+-------+ INFO - 08:58:15: | x_1 | 0 | None | 1 | float | INFO - 08:58:15: | x_2 | 0 | None | 1 | float | INFO - 08:58:15: +------+-------------+-------+-------------+-------+ INFO - 08:58:15: Solving optimization problem with algorithm fullfact: INFO - 08:58:15: 11%|█ | 1/9 [00:00<00:00, 392.25 it/sec, obj=1] INFO - 08:58:15: 22%|██▏ | 2/9 [00:00<00:00, 631.10 it/sec, obj=2] INFO - 08:58:15: 33%|███▎ | 3/9 [00:00<00:00, 807.01 it/sec, obj=3] INFO - 08:58:15: 44%|████▍ | 4/9 [00:00<00:00, 940.64 it/sec, obj=2.5] INFO - 08:58:15: 56%|█████▌ | 5/9 [00:00<00:00, 1044.14 it/sec, obj=3.5] INFO - 08:58:15: 67%|██████▋ | 6/9 [00:00<00:00, 1119.18 it/sec, obj=4.5] INFO - 08:58:15: 78%|███████▊ | 7/9 [00:00<00:00, 1184.26 it/sec, obj=4] INFO - 08:58:15: 89%|████████▉ | 8/9 [00:00<00:00, 1235.12 it/sec, obj=5] INFO - 08:58:15: 100%|██████████| 9/9 [00:00<00:00, 1279.75 it/sec, obj=6] INFO - 08:58:15: Optimization result: INFO - 08:58:15: Optimizer info: INFO - 08:58:15: Status: None INFO - 08:58:15: Message: None INFO - 08:58:15: Number of calls to the objective function by the optimizer: 9 INFO - 08:58:15: Solution: INFO - 08:58:15: Objective: 1.0 INFO - 08:58:15: Design space: INFO - 08:58:15: +------+-------------+-------+-------------+-------+ INFO - 08:58:15: | Name | Lower bound | Value | Upper bound | Type | INFO - 08:58:15: +------+-------------+-------+-------------+-------+ INFO - 08:58:15: | x_1 | 0 | 0 | 1 | float | INFO - 08:58:15: | x_2 | 0 | 0 | 1 | float | INFO - 08:58:15: +------+-------------+-------+-------------+-------+ INFO - 08:58:15: *** End DOEScenario execution (time: 0:00:00.017924) *** {'eval_jac': False, 'n_samples': 9, 'algo': 'fullfact'} .. GENERATED FROM PYTHON SOURCE LINES 79-83 Create the regression model --------------------------- Then, we build the linear regression model from the database and displays this model. .. GENERATED FROM PYTHON SOURCE LINES 83-88 .. code-block:: Python dataset = scenario.to_dataset(opt_naming=False) model = create_regression_model("LinearRegressor", data=dataset, transformer=None) model.learn() model .. raw:: html
LinearRegressor(fit_intercept=True, l2_penalty_ratio=1.0, penalty_level=0.0, random_state=0)
  • based on the scikit-learn library
  • built from 9 learning samples


.. GENERATED FROM PYTHON SOURCE LINES 89-92 Predict output -------------- Once it is built, we can use it for prediction. .. GENERATED FROM PYTHON SOURCE LINES 92-96 .. code-block:: Python input_value = {"x_1": array([1.0]), "x_2": array([2.0])} output_value = model.predict(input_value) output_value .. rst-class:: sphx-glr-script-out .. code-block:: none {'y_1': array([9.])} .. GENERATED FROM PYTHON SOURCE LINES 97-100 Predict jacobian ---------------- We can also use it to predict the jacobian of the discipline. .. GENERATED FROM PYTHON SOURCE LINES 100-103 .. code-block:: Python jacobian_value = model.predict_jacobian(input_value) jacobian_value .. rst-class:: sphx-glr-script-out .. code-block:: none {'y_1': {'x_1': array([[2.]]), 'x_2': array([[3.]])}} .. GENERATED FROM PYTHON SOURCE LINES 104-109 Get intercept ------------- In addition, it is possible to access the intercept of the model, either directly or by means of a method returning either a dictionary (default option) or an array. .. GENERATED FROM PYTHON SOURCE LINES 109-111 .. code-block:: Python model.intercept, model.get_intercept() .. rst-class:: sphx-glr-script-out .. code-block:: none (array([1.]), {'y_1': [0.9999999999999987]}) .. GENERATED FROM PYTHON SOURCE LINES 112-117 Get coefficients ---------------- In addition, it is possible to access the coefficients of the model, either directly or by means of a method returning either a dictionary (default option) or an array. .. GENERATED FROM PYTHON SOURCE LINES 117-118 .. code-block:: Python model.coefficients, model.get_coefficients() .. rst-class:: sphx-glr-script-out .. code-block:: none (array([[2., 3.]]), {'y_1': [{'x_1': [2.000000000000001], 'x_2': [3.0000000000000018]}]}) .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.052 seconds) .. _sphx_glr_download_examples_mlearning_regression_model_plot_linear_regression.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_linear_regression.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_linear_regression.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_