Clustering algorithms

Warning

Some capabilities may require the installation of GEMSEO with all its features and some others may depend on plugins.

Note

All the features of the wrapped libraries may not be exposed through GEMSEO.

GaussianMixture

Module: gemseo.mlearning.clustering.gaussian_mixture

Required parameters
  • data : Dataset

    The learning dataset.

Optional parameters
  • n_components : int, optional

    The number of components of the Gaussian mixture.

    By default it is set to 5.

  • random_state : int | None, optional

    The random state passed to the random number generator. Use an integer for reproducible results.

    By default it is set to 0.

  • transformer : TransformerType, optional

    The strategies to transform the variables. The values are instances of BaseTransformer while the keys are the names of either the variables or the groups of variables, e.g. "inputs" or "outputs" in the case of the regression algorithms. If a group is specified, the BaseTransformer will be applied to all the variables of this group. If IDENTITY, do not transform the variables.

    By default it is set to {}.

  • var_names : Iterable[str] | None, optional

    The names of the variables. If None, consider all variables mentioned in the learning dataset.

    By default it is set to None.

  • **parameters : int | float | str | bool | None

    The parameters of the machine learning algorithm.

KMeans

Module: gemseo.mlearning.clustering.kmeans

Required parameters
  • data : Dataset

    The learning dataset.

Optional parameters
  • n_clusters : int, optional

    The number of clusters of the K-means algorithm.

    By default it is set to 5.

  • random_state : int | None, optional

    The random state passed to the method generating the initial centroids Use an integer for reproducible results.

    By default it is set to 0.

  • transformer : TransformerType, optional

    The strategies to transform the variables. The values are instances of BaseTransformer while the keys are the names of either the variables or the groups of variables, e.g. "inputs" or "outputs" in the case of the regression algorithms. If a group is specified, the BaseTransformer will be applied to all the variables of this group. If IDENTITY, do not transform the variables.

    By default it is set to {}.

  • var_names : Iterable[str] | None, optional

    The names of the variables. If None, consider all variables mentioned in the learning dataset.

    By default it is set to None.

  • **parameters : int | float | bool | str | None

    The parameters of the machine learning algorithm.