Use a design of experiments from an array#

from __future__ import annotations

import numpy as np

from gemseo import create_design_space
from gemseo import create_discipline
from gemseo import create_scenario

Let us consider a discipline implementing the function \(y=a*b\)

discipline = create_discipline("AnalyticDiscipline", expressions={"y": "a*b"})

where \(a,b\in\{1,2,\ldots,10\}\):

design_space = create_design_space()
design_space.add_variable("a", 1, design_space.DesignVariableType.INTEGER, 1, 10)
design_space.add_variable("b", 1, design_space.DesignVariableType.INTEGER, 1, 10)

We want to evaluate this discipline over this design space by using the following input samples:

sample_1 = [1.0, 2.0]
sample_2 = [2.0, 3.0]
samples = np.array([sample_1, sample_2])

For that, we can create a scenario and execute it with a CustomDOE with the setting "samples":

scenario = create_scenario(
    [discipline],
    "y",
    design_space,
    scenario_type="DOE",
    formulation_name="DisciplinaryOpt",
)
scenario.execute(algo_name="CustomDOE", samples=samples)

Note that both the formulation settings passed to create_scenario() and the algorithm settings passed to execute() can be provided via a Pydantic model. For more information, see Formulation Settings and Algorithm Settings.

Then, we can display the content of the database as a Dataset and check the values of the output, which should be the product of \(a\) and \(b\):

opt_problem = scenario.formulation.optimization_problem
dataset = opt_problem.to_dataset(name="custom_sampling", opt_naming=False)
dataset
GROUP inputs outputs
VARIABLE a b y
COMPONENT 0 0 0
0 1 2 2.0
1 2 3 6.0


Total running time of the script: (0 minutes 0.018 seconds)

Gallery generated by Sphinx-Gallery