Multi-start optimization#

The optimization algorithm multistart generates starting points using a DOE algorithm and run a sub-optimization algorithm from each starting point.

from __future__ import annotations

from gemseo import configure_logger
from gemseo import create_design_space
from gemseo import create_discipline
from gemseo import create_scenario
from gemseo import execute_post
from gemseo.algos.opt.multi_start.settings.multi_start_settings import (
    MultiStart_Settings,
)

configure_logger()
<RootLogger root (INFO)>

First, we create the disciplines

objective = create_discipline("AnalyticDiscipline", expressions={"obj": "x**3-x+1"})
constraint = create_discipline(
    "AnalyticDiscipline", expressions={"cstr": "x**2+obj**2-1.5"}
)

and the design space

design_space = create_design_space()
design_space.add_variable("x", lower_bound=-1.5, upper_bound=1.5, value=1.5)

Then, we define the MDO scenario

scenario = create_scenario(
    [objective, constraint],
    "obj",
    design_space,
    formulation_name="DisciplinaryOpt",
)

Note that the formulation settings passed to create_scenario() can be provided via a Pydantic model. For more information, see Formulation Settings.

scenario.add_constraint("cstr", constraint_type="ineq")

and execute it with the MultiStart optimization algorithm combining the local optimization algorithm SLSQP and the full-factorial DOE algorithm:

multistart_settings = MultiStart_Settings(
    max_iter=100,
    opt_algo_name="SLSQP",
    doe_algo_name="PYDOE_FULLFACT",
    n_start=10,
    # Set multistart_file_path to save the history of the local optima.
    multistart_file_path="multistart.hdf5",
)
scenario.execute(multistart_settings)
   INFO - 02:57:42:
   INFO - 02:57:42: *** Start MDOScenario execution ***
   INFO - 02:57:42: MDOScenario
   INFO - 02:57:42:    Disciplines: AnalyticDiscipline AnalyticDiscipline
   INFO - 02:57:42:    MDO formulation: DisciplinaryOpt
   INFO - 02:57:42: Optimization problem:
   INFO - 02:57:42:    minimize obj(x)
   INFO - 02:57:42:    with respect to x
   INFO - 02:57:42:    subject to constraints:
   INFO - 02:57:42:       cstr(x) <= 0
   INFO - 02:57:42:    over the design space:
   INFO - 02:57:42:       +------+-------------+-------+-------------+-------+
   INFO - 02:57:42:       | Name | Lower bound | Value | Upper bound | Type  |
   INFO - 02:57:42:       +------+-------------+-------+-------------+-------+
   INFO - 02:57:42:       | x    |     -1.5    |  1.5  |     1.5     | float |
   INFO - 02:57:42:       +------+-------------+-------+-------------+-------+
   INFO - 02:57:42: Solving optimization problem with algorithm MultiStart:
   INFO - 02:57:42:      1%|          | 1/100 [00:00<00:00, 304.40 it/sec, obj=2.88]
   INFO - 02:57:42:      2%|▏         | 2/100 [00:00<00:00, 401.02 it/sec, obj=-0.875]
   INFO - 02:57:42:      3%|▎         | 3/100 [00:00<00:00, 430.63 it/sec, obj=-0.267]
   INFO - 02:57:42:      4%|▍         | 4/100 [00:00<00:00, 517.58 it/sec, obj=-0.809]
   INFO - 02:57:42:      5%|▌         | 5/100 [00:00<00:00, 589.52 it/sec, obj=-0.868]
   INFO - 02:57:42:      6%|▌         | 6/100 [00:00<00:00, 648.04 it/sec, obj=-0.872]
   INFO - 02:57:42:      7%|▋         | 7/100 [00:00<00:00, 664.24 it/sec, obj=-0.265]
   INFO - 02:57:42:      8%|▊         | 8/100 [00:00<00:00, 674.88 it/sec, obj=0.136]
   INFO - 02:57:42:      9%|▉         | 9/100 [00:00<00:00, 682.23 it/sec, obj=0.579]
   INFO - 02:57:42:     10%|█         | 10/100 [00:00<00:00, 716.01 it/sec, obj=0.289]
   INFO - 02:57:42:     11%|█         | 11/100 [00:00<00:00, 722.40 it/sec, obj=1.25]
WARNING - 02:57:42: Optimization found no feasible point; the least infeasible point is selected.
   INFO - 02:57:42:     12%|█▏        | 12/100 [00:00<00:00, 697.85 it/sec, obj=0.579]
   INFO - 02:57:42:     13%|█▎        | 13/100 [00:00<00:00, 689.12 it/sec, obj=-0.875]
   INFO - 02:57:42:     14%|█▍        | 14/100 [00:00<00:00, 695.22 it/sec, obj=-0.267]
   INFO - 02:57:42:     15%|█▌        | 15/100 [00:00<00:00, 710.68 it/sec, obj=-0.809]
   INFO - 02:57:42:     16%|█▌        | 16/100 [00:00<00:00, 732.23 it/sec, obj=-0.868]
   INFO - 02:57:42:     17%|█▋        | 17/100 [00:00<00:00, 752.81 it/sec, obj=-0.874]
   INFO - 02:57:42:     18%|█▊        | 18/100 [00:00<00:00, 753.36 it/sec, obj=-0.266]
   INFO - 02:57:42:     19%|█▉        | 19/100 [00:00<00:00, 753.64 it/sec, obj=0.135]
   INFO - 02:57:42:     20%|██        | 20/100 [00:00<00:00, 754.91 it/sec, obj=0.577]
   INFO - 02:57:42:     21%|██        | 21/100 [00:00<00:00, 770.66 it/sec, obj=0.288]
WARNING - 02:57:42: Optimization found no feasible point; the least infeasible point is selected.
   INFO - 02:57:42:     22%|██▏       | 22/100 [00:00<00:00, 740.94 it/sec, obj=1.25]
   INFO - 02:57:42:     23%|██▎       | 23/100 [00:00<00:00, 733.74 it/sec, obj=-0.875]
   INFO - 02:57:42:     24%|██▍       | 24/100 [00:00<00:00, 748.33 it/sec, obj=1.01]
   INFO - 02:57:42:     25%|██▌       | 25/100 [00:00<00:00, 748.69 it/sec, obj=-0.875]
   INFO - 02:57:42:     26%|██▌       | 26/100 [00:00<00:00, 760.99 it/sec, obj=0.819]
   INFO - 02:57:42:     27%|██▋       | 27/100 [00:00<00:00, 762.11 it/sec, obj=-0.875]
   INFO - 02:57:42:     28%|██▊       | 28/100 [00:00<00:00, 773.91 it/sec, obj=0.693]
   INFO - 02:57:42:     29%|██▉       | 29/100 [00:00<00:00, 768.51 it/sec, obj=0.584]
   INFO - 02:57:42:     30%|███       | 30/100 [00:00<00:00, 768.21 it/sec, obj=-0.875]
WARNING - 02:57:42: Optimization found no feasible point; the least infeasible point is selected.
   INFO - 02:57:42:     31%|███       | 31/100 [00:00<00:00, 757.35 it/sec, obj=1.38]
   INFO - 02:57:42:     32%|███▏      | 32/100 [00:00<00:00, 748.04 it/sec, obj=1.23]
   INFO - 02:57:42:     33%|███▎      | 33/100 [00:00<00:00, 748.52 it/sec, obj=2.87]
   INFO - 02:57:42:     34%|███▍      | 34/100 [00:00<00:00, 757.23 it/sec, obj=0.848]
   INFO - 02:57:42:     35%|███▌      | 35/100 [00:00<00:00, 756.62 it/sec, obj=0.658]
   INFO - 02:57:42:     36%|███▌      | 36/100 [00:00<00:00, 748.83 it/sec, obj=0.643]
   INFO - 02:57:42:     37%|███▋      | 37/100 [00:00<00:00, 741.84 it/sec, obj=0.616]
   INFO - 02:57:42:     38%|███▊      | 38/100 [00:00<00:00, 735.91 it/sec, obj=0.615]
   INFO - 02:57:42:     39%|███▉      | 39/100 [00:00<00:00, 730.06 it/sec, obj=0.615]
   INFO - 02:57:42:     40%|████      | 40/100 [00:00<00:00, 713.98 it/sec, obj=1.16]
   INFO - 02:57:42:     41%|████      | 41/100 [00:00<00:00, 707.24 it/sec, obj=2.87]
   INFO - 02:57:42:     42%|████▏     | 42/100 [00:00<00:00, 712.47 it/sec, obj=0.785]
   INFO - 02:57:42:     43%|████▎     | 43/100 [00:00<00:00, 702.04 it/sec, obj=0.644]
   INFO - 02:57:42:     44%|████▍     | 44/100 [00:00<00:00, 698.08 it/sec, obj=0.624]
   INFO - 02:57:42:     45%|████▌     | 45/100 [00:00<00:00, 693.92 it/sec, obj=0.615]
   INFO - 02:57:42:     46%|████▌     | 46/100 [00:00<00:00, 689.52 it/sec, obj=0.615]
   INFO - 02:57:42:     47%|████▋     | 47/100 [00:00<00:00, 686.34 it/sec, obj=0.615]
   INFO - 02:57:42:     48%|████▊     | 48/100 [00:00<00:00, 683.14 it/sec, obj=0.615]
   INFO - 02:57:42:     49%|████▉     | 49/100 [00:00<00:00, 671.40 it/sec, obj=0.838]
   INFO - 02:57:42:     50%|█████     | 50/100 [00:00<00:00, 665.85 it/sec, obj=0.656]
   INFO - 02:57:42:     51%|█████     | 51/100 [00:00<00:00, 662.73 it/sec, obj=0.639]
   INFO - 02:57:42:     52%|█████▏    | 52/100 [00:00<00:00, 660.34 it/sec, obj=0.616]
   INFO - 02:57:42:     53%|█████▎    | 53/100 [00:00<00:00, 658.26 it/sec, obj=0.615]
   INFO - 02:57:42:     54%|█████▍    | 54/100 [00:00<00:00, 655.86 it/sec, obj=0.615]
   INFO - 02:57:42:     55%|█████▌    | 55/100 [00:00<00:00, 654.09 it/sec, obj=0.615]
   INFO - 02:57:42:     56%|█████▌    | 56/100 [00:00<00:00, 652.10 it/sec, obj=0.615]
   INFO - 02:57:42:     57%|█████▋    | 57/100 [00:00<00:00, 650.34 it/sec, obj=0.615]
   INFO - 02:57:42:     58%|█████▊    | 58/100 [00:00<00:00, 645.97 it/sec, obj=0.625]
   INFO - 02:57:42:     59%|█████▉    | 59/100 [00:00<00:00, 643.41 it/sec, obj=2.87]
   INFO - 02:57:42:     60%|██████    | 60/100 [00:00<00:00, 647.01 it/sec, obj=0.616]
   INFO - 02:57:42:     61%|██████    | 61/100 [00:00<00:00, 645.62 it/sec, obj=0.615]
   INFO - 02:57:42:     62%|██████▏   | 62/100 [00:00<00:00, 643.81 it/sec, obj=0.615]
   INFO - 02:57:42:     63%|██████▎   | 63/100 [00:00<00:00, 642.27 it/sec, obj=0.615]
   INFO - 02:57:42:     64%|██████▍   | 64/100 [00:00<00:00, 640.96 it/sec, obj=0.615]
   INFO - 02:57:42:     65%|██████▌   | 65/100 [00:00<00:00, 639.57 it/sec, obj=0.615]
   INFO - 02:57:42:     66%|██████▌   | 66/100 [00:00<00:00, 641.51 it/sec, obj=0.615]
   INFO - 02:57:42:     67%|██████▋   | 67/100 [00:00<00:00, 642.40 it/sec, obj=0.745]
   INFO - 02:57:42:     68%|██████▊   | 68/100 [00:00<00:00, 639.81 it/sec, obj=-0.875]
   INFO - 02:57:42:     69%|██████▉   | 69/100 [00:00<00:00, 639.92 it/sec, obj=-0.267]
   INFO - 02:57:42:     70%|███████   | 70/100 [00:00<00:00, 641.56 it/sec, obj=-0.809]
   INFO - 02:57:42:     71%|███████   | 71/100 [00:00<00:00, 646.17 it/sec, obj=-0.868]
   INFO - 02:57:42:     72%|███████▏  | 72/100 [00:00<00:00, 650.84 it/sec, obj=-0.874]
   INFO - 02:57:42:     73%|███████▎  | 73/100 [00:00<00:00, 652.28 it/sec, obj=-0.266]
   INFO - 02:57:42:     74%|███████▍  | 74/100 [00:00<00:00, 653.45 it/sec, obj=0.135]
   INFO - 02:57:42:     75%|███████▌  | 75/100 [00:00<00:00, 654.50 it/sec, obj=0.577]
   INFO - 02:57:42:     76%|███████▌  | 76/100 [00:00<00:00, 658.82 it/sec, obj=0.288]
   INFO - 02:57:42:     77%|███████▋  | 77/100 [00:00<00:00, 655.27 it/sec, obj=1.42]
   INFO - 02:57:42:     78%|███████▊  | 78/100 [00:00<00:00, 654.25 it/sec, obj=-0.875]
   INFO - 02:57:42:     79%|███████▉  | 79/100 [00:00<00:00, 655.87 it/sec, obj=-0.267]
   INFO - 02:57:42:     80%|████████  | 80/100 [00:00<00:00, 659.73 it/sec, obj=-0.809]
   INFO - 02:57:42:     81%|████████  | 81/100 [00:00<00:00, 663.98 it/sec, obj=-0.868]
   INFO - 02:57:42:     82%|████████▏ | 82/100 [00:00<00:00, 668.11 it/sec, obj=-0.874]
   INFO - 02:57:42:     83%|████████▎ | 83/100 [00:00<00:00, 669.24 it/sec, obj=-0.266]
   INFO - 02:57:42:     84%|████████▍ | 84/100 [00:00<00:00, 670.27 it/sec, obj=0.135]
   INFO - 02:57:42:     85%|████████▌ | 85/100 [00:00<00:00, 671.51 it/sec, obj=0.577]
   INFO - 02:57:42:     86%|████████▌ | 86/100 [00:00<00:00, 675.35 it/sec, obj=0.288]
WARNING - 02:57:42: Optimization found no feasible point; the least infeasible point is selected.
   INFO - 02:57:42:     87%|████████▋ | 87/100 [00:00<00:00, 661.69 it/sec, obj=-0.267]
   INFO - 02:57:42:     88%|████████▊ | 88/100 [00:00<00:00, 665.26 it/sec, obj=-0.809]
   INFO - 02:57:42:     89%|████████▉ | 89/100 [00:00<00:00, 668.74 it/sec, obj=-0.868]
   INFO - 02:57:42:     90%|█████████ | 90/100 [00:00<00:00, 672.50 it/sec, obj=-0.874]
   INFO - 02:57:42:     91%|█████████ | 91/100 [00:00<00:00, 673.63 it/sec, obj=-0.266]
   INFO - 02:57:42:     92%|█████████▏| 92/100 [00:00<00:00, 674.69 it/sec, obj=0.135]
   INFO - 02:57:42:     93%|█████████▎| 93/100 [00:00<00:00, 675.59 it/sec, obj=0.577]
WARNING - 02:57:42: Optimization found no feasible point; the least infeasible point is selected.
WARNING - 02:57:42: Optimization found no feasible point; the least infeasible point is selected.
WARNING - 02:57:42: Optimization found no feasible point; the least infeasible point is selected.
WARNING - 02:57:42: Optimization found no feasible point; the least infeasible point is selected.
WARNING - 02:57:42: Optimization found no feasible point; the least infeasible point is selected.
WARNING - 02:57:42: Optimization found no feasible point; the least infeasible point is selected.
   INFO - 02:57:42: Exporting the optimization problem to the file multistart.hdf5
   INFO - 02:57:42: Optimization result:
   INFO - 02:57:42:    Optimizer info:
   INFO - 02:57:42:       Status: None
   INFO - 02:57:42:       Message: None
   INFO - 02:57:42:       Number of calls to the objective function by the optimizer: 1
   INFO - 02:57:42:    Solution:
   INFO - 02:57:42:       The solution is feasible.
   INFO - 02:57:42:       Objective: 0.6150998205402495
   INFO - 02:57:42:       Standardized constraints:
   INFO - 02:57:42:          cstr = -0.7883188793606977
   INFO - 02:57:42:       Design space:
   INFO - 02:57:42:          +------+-------------+--------------------+-------------+-------+
   INFO - 02:57:42:          | Name | Lower bound |       Value        | Upper bound | Type  |
   INFO - 02:57:42:          +------+-------------+--------------------+-------------+-------+
   INFO - 02:57:42:          | x    |     -1.5    | 0.5773502675245377 |     1.5     | float |
   INFO - 02:57:42:          +------+-------------+--------------------+-------------+-------+
   INFO - 02:57:42: *** End MDOScenario execution (time: 0:00:00.156401) ***

Lastly, we can plot the history of the objective, either by concatenating the 10 sub-optimization histories:

execute_post(
    scenario, post_name="BasicHistory", variable_names=["obj"], save=False, show=True
)
History plot
<gemseo.post.basic_history.BasicHistory object at 0x7f7987030980>

or by filtering the local optima (one per starting point):

execute_post(
    "multistart.hdf5",
    post_name="BasicHistory",
    variable_names=["obj"],
    save=False,
    show=True,
)
History plot
    INFO - 02:57:42: Importing the optimization problem from the file multistart.hdf5

<gemseo.post.basic_history.BasicHistory object at 0x7f79854ed100>

Total running time of the script: (0 minutes 0.522 seconds)

Gallery generated by Sphinx-Gallery