Note
Go to the end to download the full example code.
Probability distributions based on SciPy¶
In this example, we seek to create a probability distribution based on the SciPy library.
from __future__ import annotations
from gemseo import configure_logger
from gemseo.uncertainty import create_distribution
from gemseo.uncertainty import get_available_distributions
configure_logger()
<RootLogger root (INFO)>
First of all, we can access the names of the available probability distributions from the API:
all_distributions = get_available_distributions()
all_distributions
['OTDiracDistribution', 'OTDistribution', 'OTExponentialDistribution', 'OTJointDistribution', 'OTNormalDistribution', 'OTTriangularDistribution', 'OTUniformDistribution', 'OTWeibullDistribution', 'SPDistribution', 'SPExponentialDistribution', 'SPJointDistribution', 'SPNormalDistribution', 'SPTriangularDistribution', 'SPUniformDistribution', 'SPWeibullDistribution']
and filter the ones based on the SciPy library (their names start with the acronym ‘SP’):
sp_distributions = get_available_distributions("SPDistribution")
sp_distributions
['SPDistribution', 'SPExponentialDistribution', 'SPNormalDistribution', 'SPTriangularDistribution', 'SPUniformDistribution', 'SPWeibullDistribution']
Create a distribution¶
Then, we can create a probability distribution, e.g. a normal distribution.
Case 1: the SciPy distribution has a GEMSEO class¶
For the standard normal distribution (mean = 0 and standard deviation = 1):
distribution_0_1 = create_distribution("SPNormalDistribution")
distribution_0_1
norm(mu=0.0, sigma=1.0)
For a normal with mean = 1 and standard deviation = 2:
distribution_1_2 = create_distribution("SPNormalDistribution", mu=1.0, sigma=2.0)
distribution_1_2
norm(mu=1.0, sigma=2.0)
Case 2: the SciPy distribution has no GEMSEO class¶
When GEMSEO does not offer a class for the SciPy distribution,
we can use the generic GEMSEO class SPDistribution
to create any SciPy distribution
by setting interfaced_distribution
to its SciPy name
and parameters
as a dictionary of SciPy parameter names and values
(see the documentation of SciPy).
distribution_1_2 = create_distribution(
"SPDistribution",
interfaced_distribution="norm",
parameters={"loc": 1.0, "scale": 2.0},
)
distribution_1_2
norm(loc=1.0, scale=2.0)
Plot the distribution¶
We can plot both cumulative and probability density functions:
distribution_0_1.plot()
<Figure size 640x320 with 2 Axes>
Get statistics¶
Mean¶
We can access the mean of the distribution:
distribution_0_1.mean
0.0
Standard deviation¶
We can access the standard deviation of the distribution:
distribution_0_1.standard_deviation
1.0
Numerical range¶
We can access the range, i.e. the difference between the numerical minimum and maximum, of the distribution:
distribution_0_1.range
array([-7.03448383, 7.03448691])
Mathematical support¶
We can access the range, i.e. the difference between the minimum and maximum, of the distribution:
distribution_0_1.support
array([-inf, inf])
Evaluate CDF¶
We can evaluate the cumulative density function:
distribution_0_1.compute_cdf(0.5)
0.6914624612740131
Evaluate inverse CDF¶
We can evaluate the inverse cumulative density function, here the quantile at 97.5%:
distribution_0_1.compute_inverse_cdf(0.975)
1.959963984540054
Generate samples¶
We can generate 10 samples of the distribution:
distribution_0_1.compute_samples(10)
array([ 1.34504818, 1.56657199, 0.21000832, -0.12342591, 1.67272851,
-0.95786854, -0.82859401, -1.29764524, 2.25452517, -0.24674468])
Total running time of the script: (0 minutes 0.180 seconds)