Parameter space#

In this example, we will see the basics of ParameterSpace.

from __future__ import annotations

from gemseo import configure_logger
from gemseo import create_discipline
from gemseo import sample_disciplines
from gemseo.algos.parameter_space import ParameterSpace
from gemseo.post.dataset.scatter_plot_matrix import ScatterMatrix

configure_logger()
<RootLogger root (INFO)>

Create a parameter space#

Firstly, the creation of a ParameterSpace does not require any mandatory argument:

parameter_space = ParameterSpace()

Then, we can add either deterministic variables from their lower and upper bounds (use ParameterSpace.add_variable()):

parameter_space.add_variable("x", lower_bound=-2.0, upper_bound=2.0)

or uncertain variables from their distribution names and parameters (use ParameterSpace.add_random_variable()):

parameter_space.add_random_variable("y", "SPNormalDistribution", mu=0.0, sigma=1.0)
parameter_space
Parameter space:
Name Lower bound Value Upper bound Type Distribution
x -2 None 2 float
y -inf 0 inf float norm(mu=0.0, sigma=1.0)


Warning

We cannot mix probability distributions from different families, e.g. an OTDistribution and a SPDistribution.

We can check that the variables x and y are implemented as deterministic and uncertain variables respectively:

parameter_space.is_deterministic("x"), parameter_space.is_uncertain("y")
(True, True)

Note that when GEMSEO does not offer a class for the SciPy distribution, we can use the generic GEMSEO class SPDistribution to create any SciPy distribution by setting interfaced_distribution to its SciPy name and parameters as a dictionary of SciPy parameter names and values (see the documentation of SciPy).

# parameter_space.add_random_variable(
#     "y",
#     "SPDistribution",
#     interfaced_distribution="norm",
#     parameters={"loc": 1.0, "scale": 2.0},
# )

A similar procedure can be followed for OpenTURNS distributions for which GEMSEO does not offer a class directly. We can use the generic GEMSEO class OTDistribution to create any OpenTURNS distribution by setting interfaced_distribution to its OpenTURNS name and parameters as a tuple of OpenTURNS parameter values (see the documentation of OpenTURNS).

# parameter_space.add_random_variable(
#     "y",
#     "OTDistribution",
#     interfaced_distribution="Normal",
#     parameters=(1.0, 2.0),
# )

Sample from the parameter space#

We can sample the uncertain variables from the ParameterSpace and get values either as a NumPy array (by default)

sample = parameter_space.compute_samples(n_samples=2, as_dict=True)
sample
[{'y': array([0.34864772])}, {'y': array([3.32304444])}]

or as a dictionary of NumPy arrays indexed by the names of the variables:

sample = parameter_space.compute_samples(n_samples=4)
sample
array([[-0.0897349 ],
       [ 0.47029186],
       [-0.28020125],
       [ 0.86069996]])

Sample a discipline over the parameter space#

We can also sample a discipline over the parameter space. For simplicity, we instantiate an AnalyticDiscipline from a dictionary of expressions:

discipline = create_discipline("AnalyticDiscipline", expressions={"z": "x+y"})

Then, we use the sample_disciplines() function with an LHS algorithm to generate 100 samples of the discipline over the whole parameter space:

dataset = sample_disciplines(
    [discipline], parameter_space, "z", algo_name="PYDOE_LHS", n_samples=100
)
WARNING - 02:42:54: No coupling in MDA, switching chain_linearize to True.
   INFO - 02:42:54: *** Start Sampling execution ***
   INFO - 02:42:54: Sampling
   INFO - 02:42:54:    Disciplines: AnalyticDiscipline
   INFO - 02:42:54:    MDO formulation: MDF
   INFO - 02:42:54: Running the algorithm PYDOE_LHS:
   INFO - 02:42:54:      1%|          | 1/100 [00:00<00:00, 482.55 it/sec]
   INFO - 02:42:54:      2%|▏         | 2/100 [00:00<00:00, 791.15 it/sec]
   INFO - 02:42:54:      3%|▎         | 3/100 [00:00<00:00, 1037.59 it/sec]
   INFO - 02:42:54:      4%|▍         | 4/100 [00:00<00:00, 1242.20 it/sec]
   INFO - 02:42:54:      5%|▌         | 5/100 [00:00<00:00, 1350.65 it/sec]
   INFO - 02:42:54:      6%|▌         | 6/100 [00:00<00:00, 1414.37 it/sec]
   INFO - 02:42:54:      7%|▋         | 7/100 [00:00<00:00, 1477.83 it/sec]
   INFO - 02:42:54:      8%|▊         | 8/100 [00:00<00:00, 1519.74 it/sec]
   INFO - 02:42:54:      9%|▉         | 9/100 [00:00<00:00, 1565.56 it/sec]
   INFO - 02:42:54:     10%|█         | 10/100 [00:00<00:00, 1639.55 it/sec]
   INFO - 02:42:54:     11%|█         | 11/100 [00:00<00:00, 1703.05 it/sec]
   INFO - 02:42:54:     12%|█▏        | 12/100 [00:00<00:00, 1771.12 it/sec]
   INFO - 02:42:54:     13%|█▎        | 13/100 [00:00<00:00, 1833.48 it/sec]
   INFO - 02:42:54:     14%|█▍        | 14/100 [00:00<00:00, 1886.96 it/sec]
   INFO - 02:42:54:     15%|█▌        | 15/100 [00:00<00:00, 1941.81 it/sec]
   INFO - 02:42:54:     16%|█▌        | 16/100 [00:00<00:00, 1995.27 it/sec]
   INFO - 02:42:54:     17%|█▋        | 17/100 [00:00<00:00, 2041.02 it/sec]
   INFO - 02:42:54:     18%|█▊        | 18/100 [00:00<00:00, 2083.44 it/sec]
   INFO - 02:42:54:     19%|█▉        | 19/100 [00:00<00:00, 2125.91 it/sec]
   INFO - 02:42:54:     20%|██        | 20/100 [00:00<00:00, 2164.63 it/sec]
   INFO - 02:42:54:     21%|██        | 21/100 [00:00<00:00, 2168.83 it/sec]
   INFO - 02:42:54:     22%|██▏       | 22/100 [00:00<00:00, 2200.53 it/sec]
   INFO - 02:42:54:     23%|██▎       | 23/100 [00:00<00:00, 2227.51 it/sec]
   INFO - 02:42:54:     24%|██▍       | 24/100 [00:00<00:00, 2256.06 it/sec]
   INFO - 02:42:54:     25%|██▌       | 25/100 [00:00<00:00, 2285.67 it/sec]
   INFO - 02:42:54:     26%|██▌       | 26/100 [00:00<00:00, 2314.98 it/sec]
   INFO - 02:42:54:     27%|██▋       | 27/100 [00:00<00:00, 2338.11 it/sec]
   INFO - 02:42:54:     28%|██▊       | 28/100 [00:00<00:00, 2364.42 it/sec]
   INFO - 02:42:54:     29%|██▉       | 29/100 [00:00<00:00, 2390.29 it/sec]
   INFO - 02:42:54:     30%|███       | 30/100 [00:00<00:00, 2409.73 it/sec]
   INFO - 02:42:54:     31%|███       | 31/100 [00:00<00:00, 2429.35 it/sec]
   INFO - 02:42:54:     32%|███▏      | 32/100 [00:00<00:00, 2408.14 it/sec]
   INFO - 02:42:54:     33%|███▎      | 33/100 [00:00<00:00, 2410.98 it/sec]
   INFO - 02:42:54:     34%|███▍      | 34/100 [00:00<00:00, 2425.77 it/sec]
   INFO - 02:42:54:     35%|███▌      | 35/100 [00:00<00:00, 2439.72 it/sec]
   INFO - 02:42:54:     36%|███▌      | 36/100 [00:00<00:00, 2449.63 it/sec]
   INFO - 02:42:54:     37%|███▋      | 37/100 [00:00<00:00, 2466.34 it/sec]
   INFO - 02:42:54:     38%|███▊      | 38/100 [00:00<00:00, 2478.90 it/sec]
   INFO - 02:42:54:     39%|███▉      | 39/100 [00:00<00:00, 2493.45 it/sec]
   INFO - 02:42:54:     40%|████      | 40/100 [00:00<00:00, 2509.72 it/sec]
   INFO - 02:42:54:     41%|████      | 41/100 [00:00<00:00, 2525.46 it/sec]
   INFO - 02:42:54:     42%|████▏     | 42/100 [00:00<00:00, 2534.98 it/sec]
   INFO - 02:42:54:     43%|████▎     | 43/100 [00:00<00:00, 2547.21 it/sec]
   INFO - 02:42:54:     44%|████▍     | 44/100 [00:00<00:00, 2561.02 it/sec]
   INFO - 02:42:54:     45%|████▌     | 45/100 [00:00<00:00, 2571.83 it/sec]
   INFO - 02:42:54:     46%|████▌     | 46/100 [00:00<00:00, 2585.47 it/sec]
   INFO - 02:42:54:     47%|████▋     | 47/100 [00:00<00:00, 2599.08 it/sec]
   INFO - 02:42:54:     48%|████▊     | 48/100 [00:00<00:00, 2609.72 it/sec]
   INFO - 02:42:54:     49%|████▉     | 49/100 [00:00<00:00, 2621.81 it/sec]
   INFO - 02:42:54:     50%|█████     | 50/100 [00:00<00:00, 2633.85 it/sec]
   INFO - 02:42:54:     51%|█████     | 51/100 [00:00<00:00, 2645.63 it/sec]
   INFO - 02:42:54:     52%|█████▏    | 52/100 [00:00<00:00, 2653.30 it/sec]
   INFO - 02:42:54:     53%|█████▎    | 53/100 [00:00<00:00, 2664.52 it/sec]
   INFO - 02:42:54:     54%|█████▍    | 54/100 [00:00<00:00, 2675.92 it/sec]
   INFO - 02:42:54:     55%|█████▌    | 55/100 [00:00<00:00, 2683.25 it/sec]
   INFO - 02:42:54:     56%|█████▌    | 56/100 [00:00<00:00, 2689.61 it/sec]
   INFO - 02:42:54:     57%|█████▋    | 57/100 [00:00<00:00, 2699.22 it/sec]
   INFO - 02:42:54:     58%|█████▊    | 58/100 [00:00<00:00, 2706.51 it/sec]
   INFO - 02:42:54:     59%|█████▉    | 59/100 [00:00<00:00, 2715.50 it/sec]
   INFO - 02:42:54:     60%|██████    | 60/100 [00:00<00:00, 2724.90 it/sec]
   INFO - 02:42:54:     61%|██████    | 61/100 [00:00<00:00, 2732.15 it/sec]
   INFO - 02:42:54:     62%|██████▏   | 62/100 [00:00<00:00, 2739.93 it/sec]
   INFO - 02:42:54:     63%|██████▎   | 63/100 [00:00<00:00, 2747.99 it/sec]
   INFO - 02:42:54:     64%|██████▍   | 64/100 [00:00<00:00, 2756.38 it/sec]
   INFO - 02:42:54:     65%|██████▌   | 65/100 [00:00<00:00, 2759.02 it/sec]
   INFO - 02:42:54:     66%|██████▌   | 66/100 [00:00<00:00, 2766.22 it/sec]
   INFO - 02:42:54:     67%|██████▋   | 67/100 [00:00<00:00, 2774.45 it/sec]
   INFO - 02:42:54:     68%|██████▊   | 68/100 [00:00<00:00, 2777.01 it/sec]
   INFO - 02:42:54:     69%|██████▉   | 69/100 [00:00<00:00, 2781.07 it/sec]
   INFO - 02:42:54:     70%|███████   | 70/100 [00:00<00:00, 2787.02 it/sec]
   INFO - 02:42:54:     71%|███████   | 71/100 [00:00<00:00, 2790.94 it/sec]
   INFO - 02:42:54:     72%|███████▏  | 72/100 [00:00<00:00, 2797.26 it/sec]
   INFO - 02:42:54:     73%|███████▎  | 73/100 [00:00<00:00, 2804.14 it/sec]
   INFO - 02:42:54:     74%|███████▍  | 74/100 [00:00<00:00, 2808.80 it/sec]
   INFO - 02:42:54:     75%|███████▌  | 75/100 [00:00<00:00, 2814.72 it/sec]
   INFO - 02:42:54:     76%|███████▌  | 76/100 [00:00<00:00, 2821.87 it/sec]
   INFO - 02:42:54:     77%|███████▋  | 77/100 [00:00<00:00, 2828.83 it/sec]
   INFO - 02:42:54:     78%|███████▊  | 78/100 [00:00<00:00, 2831.90 it/sec]
   INFO - 02:42:54:     79%|███████▉  | 79/100 [00:00<00:00, 2837.22 it/sec]
   INFO - 02:42:54:     80%|████████  | 80/100 [00:00<00:00, 2843.07 it/sec]
   INFO - 02:42:54:     81%|████████  | 81/100 [00:00<00:00, 2846.96 it/sec]
   INFO - 02:42:54:     82%|████████▏ | 82/100 [00:00<00:00, 2850.88 it/sec]
   INFO - 02:42:54:     83%|████████▎ | 83/100 [00:00<00:00, 2856.66 it/sec]
   INFO - 02:42:54:     84%|████████▍ | 84/100 [00:00<00:00, 2860.15 it/sec]
   INFO - 02:42:54:     85%|████████▌ | 85/100 [00:00<00:00, 2864.96 it/sec]
   INFO - 02:42:54:     86%|████████▌ | 86/100 [00:00<00:00, 2870.34 it/sec]
   INFO - 02:42:54:     87%|████████▋ | 87/100 [00:00<00:00, 2875.87 it/sec]
   INFO - 02:42:54:     88%|████████▊ | 88/100 [00:00<00:00, 2878.84 it/sec]
   INFO - 02:42:54:     89%|████████▉ | 89/100 [00:00<00:00, 2883.80 it/sec]
   INFO - 02:42:54:     90%|█████████ | 90/100 [00:00<00:00, 2888.40 it/sec]
   INFO - 02:42:54:     91%|█████████ | 91/100 [00:00<00:00, 2891.09 it/sec]
   INFO - 02:42:54:     92%|█████████▏| 92/100 [00:00<00:00, 2895.90 it/sec]
   INFO - 02:42:54:     93%|█████████▎| 93/100 [00:00<00:00, 2901.14 it/sec]
   INFO - 02:42:54:     94%|█████████▍| 94/100 [00:00<00:00, 2904.15 it/sec]
   INFO - 02:42:54:     95%|█████████▌| 95/100 [00:00<00:00, 2906.91 it/sec]
   INFO - 02:42:54:     96%|█████████▌| 96/100 [00:00<00:00, 2911.36 it/sec]
   INFO - 02:42:54:     97%|█████████▋| 97/100 [00:00<00:00, 2916.13 it/sec]
   INFO - 02:42:54:     98%|█████████▊| 98/100 [00:00<00:00, 2918.50 it/sec]
   INFO - 02:42:54:     99%|█████████▉| 99/100 [00:00<00:00, 2923.23 it/sec]
   INFO - 02:42:54:    100%|██████████| 100/100 [00:00<00:00, 2928.04 it/sec]
   INFO - 02:42:54: *** End Sampling execution (time: 0:00:00.046381) ***

and visualize it in a tabular way:

dataset
GROUP inputs outputs
VARIABLE x y z
COMPONENT 0 0 0
0 1.869403 1.246453 3.115855
1 -1.567970 3.285041 1.717071
2 0.282640 -0.101706 0.180934
3 1.916313 1.848317 3.764630
4 1.562653 0.586038 2.148691
... ... ... ...
95 0.120633 -0.327477 -0.206844
96 -0.999225 1.461403 0.462178
97 -1.396066 -0.972779 -2.368845
98 1.090093 0.225565 1.315658
99 -1.433207 -0.779330 -2.212536

100 rows × 3 columns



or with a graphical post-processing, e.g. a scatter plot matrix:

ScatterMatrix(dataset).execute(save=False, show=True)
plot u parameter space
[<Figure size 640x480 with 9 Axes>]

Sample a discipline over the uncertain space#

If we want to sample a discipline over the uncertain space only, we need to extract it:

uncertain_space = parameter_space.extract_uncertain_space()

Then, we sample the discipline over this uncertain space:

dataset = sample_disciplines(
    [discipline], uncertain_space, "z", algo_name="PYDOE_LHS", n_samples=100
)
dataset
WARNING - 02:42:55: No coupling in MDA, switching chain_linearize to True.
   INFO - 02:42:55: *** Start Sampling execution ***
   INFO - 02:42:55: Sampling
   INFO - 02:42:55:    Disciplines: AnalyticDiscipline
   INFO - 02:42:55:    MDO formulation: MDF
   INFO - 02:42:55: Running the algorithm PYDOE_LHS:
   INFO - 02:42:55:      1%|          | 1/100 [00:00<00:00, 1943.61 it/sec]
   INFO - 02:42:55:      2%|▏         | 2/100 [00:00<00:00, 2146.52 it/sec]
   INFO - 02:42:55:      3%|▎         | 3/100 [00:00<00:00, 2322.00 it/sec]
   INFO - 02:42:55:      4%|▍         | 4/100 [00:00<00:00, 2407.06 it/sec]
   INFO - 02:42:55:      5%|▌         | 5/100 [00:00<00:00, 2494.83 it/sec]
   INFO - 02:42:55:      6%|▌         | 6/100 [00:00<00:00, 2563.76 it/sec]
   INFO - 02:42:55:      7%|▋         | 7/100 [00:00<00:00, 2570.49 it/sec]
   INFO - 02:42:55:      8%|▊         | 8/100 [00:00<00:00, 2607.18 it/sec]
   INFO - 02:42:55:      9%|▉         | 9/100 [00:00<00:00, 2649.41 it/sec]
   INFO - 02:42:55:     10%|█         | 10/100 [00:00<00:00, 2658.66 it/sec]
   INFO - 02:42:55:     11%|█         | 11/100 [00:00<00:00, 2688.97 it/sec]
   INFO - 02:42:55:     12%|█▏        | 12/100 [00:00<00:00, 2699.18 it/sec]
   INFO - 02:42:55:     13%|█▎        | 13/100 [00:00<00:00, 2717.19 it/sec]
   INFO - 02:42:55:     14%|█▍        | 14/100 [00:00<00:00, 2742.53 it/sec]
   INFO - 02:42:55:     15%|█▌        | 15/100 [00:00<00:00, 2756.39 it/sec]
   INFO - 02:42:55:     16%|█▌        | 16/100 [00:00<00:00, 2771.49 it/sec]
   INFO - 02:42:55:     17%|█▋        | 17/100 [00:00<00:00, 2793.57 it/sec]
   INFO - 02:42:55:     18%|█▊        | 18/100 [00:00<00:00, 2815.60 it/sec]
   INFO - 02:42:55:     19%|█▉        | 19/100 [00:00<00:00, 2821.85 it/sec]
   INFO - 02:42:55:     20%|██        | 20/100 [00:00<00:00, 2836.00 it/sec]
   INFO - 02:42:55:     21%|██        | 21/100 [00:00<00:00, 2850.22 it/sec]
   INFO - 02:42:55:     22%|██▏       | 22/100 [00:00<00:00, 2849.22 it/sec]
   INFO - 02:42:55:     23%|██▎       | 23/100 [00:00<00:00, 2861.56 it/sec]
   INFO - 02:42:55:     24%|██▍       | 24/100 [00:00<00:00, 2875.03 it/sec]
   INFO - 02:42:55:     25%|██▌       | 25/100 [00:00<00:00, 2878.65 it/sec]
   INFO - 02:42:55:     26%|██▌       | 26/100 [00:00<00:00, 2887.57 it/sec]
   INFO - 02:42:55:     27%|██▋       | 27/100 [00:00<00:00, 2898.55 it/sec]
   INFO - 02:42:55:     28%|██▊       | 28/100 [00:00<00:00, 2892.55 it/sec]
   INFO - 02:42:55:     29%|██▉       | 29/100 [00:00<00:00, 2897.79 it/sec]
   INFO - 02:42:55:     30%|███       | 30/100 [00:00<00:00, 2907.26 it/sec]
   INFO - 02:42:55:     31%|███       | 31/100 [00:00<00:00, 2910.04 it/sec]
   INFO - 02:42:55:     32%|███▏      | 32/100 [00:00<00:00, 2917.78 it/sec]
   INFO - 02:42:55:     33%|███▎      | 33/100 [00:00<00:00, 2926.01 it/sec]
   INFO - 02:42:55:     34%|███▍      | 34/100 [00:00<00:00, 2928.02 it/sec]
   INFO - 02:42:55:     35%|███▌      | 35/100 [00:00<00:00, 2931.73 it/sec]
   INFO - 02:42:55:     36%|███▌      | 36/100 [00:00<00:00, 2939.59 it/sec]
   INFO - 02:42:55:     37%|███▋      | 37/100 [00:00<00:00, 2941.98 it/sec]
   INFO - 02:42:55:     38%|███▊      | 38/100 [00:00<00:00, 2948.00 it/sec]
   INFO - 02:42:55:     39%|███▉      | 39/100 [00:00<00:00, 2954.16 it/sec]
   INFO - 02:42:55:     40%|████      | 40/100 [00:00<00:00, 2956.23 it/sec]
   INFO - 02:42:55:     41%|████      | 41/100 [00:00<00:00, 2960.50 it/sec]
   INFO - 02:42:55:     42%|████▏     | 42/100 [00:00<00:00, 2966.32 it/sec]
   INFO - 02:42:55:     43%|████▎     | 43/100 [00:00<00:00, 2965.83 it/sec]
   INFO - 02:42:55:     44%|████▍     | 44/100 [00:00<00:00, 2968.18 it/sec]
   INFO - 02:42:55:     45%|████▌     | 45/100 [00:00<00:00, 2972.67 it/sec]
   INFO - 02:42:55:     46%|████▌     | 46/100 [00:00<00:00, 2973.86 it/sec]
   INFO - 02:42:55:     47%|████▋     | 47/100 [00:00<00:00, 2974.68 it/sec]
   INFO - 02:42:55:     48%|████▊     | 48/100 [00:00<00:00, 2979.35 it/sec]
   INFO - 02:42:55:     49%|████▉     | 49/100 [00:00<00:00, 2981.80 it/sec]
   INFO - 02:42:55:     50%|█████     | 50/100 [00:00<00:00, 2983.95 it/sec]
   INFO - 02:42:55:     51%|█████     | 51/100 [00:00<00:00, 2988.15 it/sec]
   INFO - 02:42:55:     52%|█████▏    | 52/100 [00:00<00:00, 2992.97 it/sec]
   INFO - 02:42:55:     53%|█████▎    | 53/100 [00:00<00:00, 2992.83 it/sec]
   INFO - 02:42:55:     54%|█████▍    | 54/100 [00:00<00:00, 2996.92 it/sec]
   INFO - 02:42:55:     55%|█████▌    | 55/100 [00:00<00:00, 3000.02 it/sec]
   INFO - 02:42:55:     56%|█████▌    | 56/100 [00:00<00:00, 2998.95 it/sec]
   INFO - 02:42:55:     57%|█████▋    | 57/100 [00:00<00:00, 3001.72 it/sec]
   INFO - 02:42:55:     58%|█████▊    | 58/100 [00:00<00:00, 3005.52 it/sec]
   INFO - 02:42:55:     59%|█████▉    | 59/100 [00:00<00:00, 2999.89 it/sec]
   INFO - 02:42:55:     60%|██████    | 60/100 [00:00<00:00, 2993.33 it/sec]
   INFO - 02:42:55:     61%|██████    | 61/100 [00:00<00:00, 2994.00 it/sec]
   INFO - 02:42:55:     62%|██████▏   | 62/100 [00:00<00:00, 2987.84 it/sec]
   INFO - 02:42:55:     63%|██████▎   | 63/100 [00:00<00:00, 2985.10 it/sec]
   INFO - 02:42:55:     64%|██████▍   | 64/100 [00:00<00:00, 2983.81 it/sec]
   INFO - 02:42:55:     65%|██████▌   | 65/100 [00:00<00:00, 2985.63 it/sec]
   INFO - 02:42:55:     66%|██████▌   | 66/100 [00:00<00:00, 2987.78 it/sec]
   INFO - 02:42:55:     67%|██████▋   | 67/100 [00:00<00:00, 2990.58 it/sec]
   INFO - 02:42:55:     68%|██████▊   | 68/100 [00:00<00:00, 2989.49 it/sec]
   INFO - 02:42:55:     69%|██████▉   | 69/100 [00:00<00:00, 2992.43 it/sec]
   INFO - 02:42:55:     70%|███████   | 70/100 [00:00<00:00, 2995.23 it/sec]
   INFO - 02:42:55:     71%|███████   | 71/100 [00:00<00:00, 2993.16 it/sec]
   INFO - 02:42:55:     72%|███████▏  | 72/100 [00:00<00:00, 2994.18 it/sec]
   INFO - 02:42:55:     73%|███████▎  | 73/100 [00:00<00:00, 2996.25 it/sec]
   INFO - 02:42:55:     74%|███████▍  | 74/100 [00:00<00:00, 2995.76 it/sec]
   INFO - 02:42:55:     75%|███████▌  | 75/100 [00:00<00:00, 2998.76 it/sec]
   INFO - 02:42:55:     76%|███████▌  | 76/100 [00:00<00:00, 3002.20 it/sec]
   INFO - 02:42:55:     77%|███████▋  | 77/100 [00:00<00:00, 3002.59 it/sec]
   INFO - 02:42:55:     78%|███████▊  | 78/100 [00:00<00:00, 3004.41 it/sec]
   INFO - 02:42:55:     79%|███████▉  | 79/100 [00:00<00:00, 3006.72 it/sec]
   INFO - 02:42:55:     80%|████████  | 80/100 [00:00<00:00, 3006.70 it/sec]
   INFO - 02:42:55:     81%|████████  | 81/100 [00:00<00:00, 3008.80 it/sec]
   INFO - 02:42:55:     82%|████████▏ | 82/100 [00:00<00:00, 3011.30 it/sec]
   INFO - 02:42:55:     83%|████████▎ | 83/100 [00:00<00:00, 3011.48 it/sec]
   INFO - 02:42:55:     84%|████████▍ | 84/100 [00:00<00:00, 3012.25 it/sec]
   INFO - 02:42:55:     85%|████████▌ | 85/100 [00:00<00:00, 3014.63 it/sec]
   INFO - 02:42:55:     86%|████████▌ | 86/100 [00:00<00:00, 3014.66 it/sec]
   INFO - 02:42:55:     87%|████████▋ | 87/100 [00:00<00:00, 3015.17 it/sec]
   INFO - 02:42:55:     88%|████████▊ | 88/100 [00:00<00:00, 3016.97 it/sec]
   INFO - 02:42:55:     89%|████████▉ | 89/100 [00:00<00:00, 3016.92 it/sec]
   INFO - 02:42:55:     90%|█████████ | 90/100 [00:00<00:00, 3014.23 it/sec]
   INFO - 02:42:55:     91%|█████████ | 91/100 [00:00<00:00, 3016.01 it/sec]
   INFO - 02:42:55:     92%|█████████▏| 92/100 [00:00<00:00, 3016.16 it/sec]
   INFO - 02:42:55:     93%|█████████▎| 93/100 [00:00<00:00, 3014.78 it/sec]
   INFO - 02:42:55:     94%|█████████▍| 94/100 [00:00<00:00, 3014.35 it/sec]
   INFO - 02:42:55:     95%|█████████▌| 95/100 [00:00<00:00, 3001.60 it/sec]
   INFO - 02:42:55:     96%|█████████▌| 96/100 [00:00<00:00, 3000.82 it/sec]
   INFO - 02:42:55:     97%|█████████▋| 97/100 [00:00<00:00, 3002.48 it/sec]
   INFO - 02:42:55:     98%|█████████▊| 98/100 [00:00<00:00, 3002.01 it/sec]
   INFO - 02:42:55:     99%|█████████▉| 99/100 [00:00<00:00, 3002.69 it/sec]
   INFO - 02:42:55:    100%|██████████| 100/100 [00:00<00:00, 3004.17 it/sec]
   INFO - 02:42:55: *** End Sampling execution (time: 0:00:00.044720) ***
GROUP inputs outputs
VARIABLE y z
COMPONENT 0 0
0 -0.640726 -0.640726
1 -0.393653 -0.393653
2 0.550565 0.550565
3 0.944369 0.944369
4 -2.115275 -2.115275
... ... ...
95 0.081947 0.081947
96 -1.085812 -1.085812
97 -0.761651 -0.761651
98 -0.042932 -0.042932
99 -0.813354 -0.813354

100 rows × 2 columns



Total running time of the script: (0 minutes 0.470 seconds)

Gallery generated by Sphinx-Gallery