Skip to main content
Ctrl+K
gemseo homepage gemseo homepage
  • User guide
  • Examples
  • API documentation
  • Cheat sheets
  • About us
    • Bibliography
    • Contributing
    • Credits
    • FAQ
    • General index
    • Glossary
    • Licenses
    • Overview
    • Plugins
    • Roadmap
    • Software
    • Upgrading
  • GitLab
  • User guide
  • Examples
  • API documentation
  • Cheat sheets
  • About us
  • Bibliography
  • Contributing
  • Credits
  • FAQ
  • General index
  • Glossary
  • Licenses
  • Overview
  • Plugins
  • Roadmap
  • Software
  • Upgrading
  • GitLab

Section Navigation

  • Make GEMSEO easy to use
    • Interface a software
    • Define an MDO problem
    • Define settings models
    • Cheat sheets
    • Extend GEMSEO features
  • Main concepts
    • Design space
    • Discipline
    • Scenario
    • Data persistence
  • Optimization and DOE
    • The GEMSEO concepts
    • Optimization and DOE framework
    • Optimization algorithms
    • DOE algorithms
  • Design of experiments
  • Multidisciplinary design optimization
    • Coupling visualization
    • MDO formulations
    • Multi Disciplinary Analyses
    • How to deal with post-processing
  • Machine learning
    • Introduction
    • API
    • Unsupervised learning for unlabeled data
    • Supervised learning for input-output data
    • Measure the quality of a machine learning algorithm
    • Calibrate or select a machine learning algorithm
    • Transform data to improve the ML algorithm quality
  • Surrogate models
    • Create a surrogate discipline
  • Uncertainty quantification
    • Introduction
    • Probability distribution
    • Parameter space
    • Statistics
    • Sensitivity analysis
  • Ordinary differential equations
    • Introduction
    • ODEProblem
    • ODEDiscipline
  • Scalable models
    • Scalable models
    • The scalable problem
  • Comprehensive list of tools and their settings
    • Disciplines
    • DOE (design of experiments)
    • Linear solvers
    • Machine learning
    • MDA (multidisciplinary analysis)
    • MDO formulations
    • ODE (ordinary differential equation) solvers
    • Optimizers
    • Post-processors
    • Surrogate disciplines
    • Uncertainty
  • Benchmark problems
  • User guide
  • Machine learning
  • Supervised learning for input-output data
  • Classification

Classification#

API#

Classifiers.

This package includes classification algorithms, a.k.a. classifiers.

Given an input data, a classifier is used to predict either the class associated with this input data or the probability of belonging to each class.

Use the ClassifierFactory to access all the available classifiers or derive the BaseClassifier class to add a new one.

Algorithms#

See the classification algorithms.

Examples#

See the examples about classification.

previous

Supervised learning

next

Regression

On this page
  • API
  • Algorithms
  • Examples

This Page

  • Show Source

© Copyright 2025, IRT Saint Exupéry.