gemseo.algos.multiobjective_optimization_result module#
Multi-objective optimization result.
- class MultiObjectiveOptimizationResult(x_0=None, x_0_as_dict=<factory>, x_opt=None, x_opt_as_dict=<factory>, f_opt=None, objective_name='', status=None, optimizer_name=None, message=None, n_obj_call=None, n_grad_call=None, n_constr_call=None, is_feasible=False, optimum_index=None, constraint_values=None, constraints_grad=None, pareto_front=None, _MultiObjectiveOptimizationResult__PARETO_FRONT='pareto_front')[source]#
Bases:
OptimizationResult
The result of a multi-objective optimization.
- Parameters:
x_0 (ndarray | None)
x_0_as_dict (dict[str, ndarray]) --
By default it is set to <factory>.
x_opt (ndarray | None)
x_opt_as_dict (dict[str, ndarray]) --
By default it is set to <factory>.
f_opt (ndarray | None)
objective_name (str) --
By default it is set to "".
status (int | None)
optimizer_name (str | None)
message (str | None)
n_obj_call (int | None)
n_grad_call (int | None)
n_constr_call (int | None)
is_feasible (bool) --
By default it is set to False.
optimum_index (int | None)
constraint_values (Mapping[str, ndarray] | None)
constraints_grad (Mapping[str, ndarray | None] | None)
pareto_front (ParetoFront | None)
_MultiObjectiveOptimizationResult__PARETO_FRONT (Final[str]) --
By default it is set to "pareto_front".
- to_dict()[source]#
Convert the optimization result to a dictionary.
The keys are the names of the optimization result fields, except for the constraint values and gradients. The key
"constr:y"
maps toresult.constraint_values["y"]
while"constr_grad:y"
maps toresult.constraints_grad["y"]
.- Returns:
A dictionary representation of the optimization result.
- pareto_front: ParetoFront | None = None#
The Pareto front when the solution is feasible.