gemseo.mlearning package#
Machine learning functionalities.
This module proposes many high-level functions for creating and loading machine learning models.
- create_classification_model(name, data, transformer=mappingproxy({'inputs': <gemseo.mlearning.transformers.scaler.min_max_scaler.MinMaxScaler object>}), **parameters)[source]#
Create a classification model from a training dataset.
- Parameters:
name (str) -- The name of the classification algorithm.
data (IODataset) -- The training dataset.
transformer (TransformerType) --
The strategies to transform the variables. Values are instances of
BaseTransformer
while keys are names of either variables or groups of variables. IfIDENTITY
, do not transform the variables.By default it is set to {'inputs': <gemseo.mlearning.transformers.scaler.min_max_scaler.MinMaxScaler object at 0x7f95bbc67ec0>}.
parameters -- The parameters of the classification model.
- Returns:
A classification model.
- Return type:
- create_clustering_model(name, data, transformer=mappingproxy({}), **parameters)[source]#
Create a clustering model from a training dataset.
- Parameters:
name (str) -- The name of the clustering algorithm.
data (Dataset) -- The training dataset.
transformer (TransformerType) --
The strategies to transform the variables. Values are instances of
BaseTransformer
while keys are names of either variables or groups of variables. IfIDENTITY
, do not transform the variables.By default it is set to {}.
parameters -- The parameters of the clustering model.
- Returns:
A clustering model.
- Return type:
- create_mlearning_model(name, data, transformer=mappingproxy({}), **parameters)[source]#
Create a machine learning algorithm from a training dataset.
- Parameters:
name (str) -- The name of the machine learning algorithm.
data (Dataset) -- The training dataset.
transformer (TransformerType) --
The strategies to transform the variables. Values are instances of
BaseTransformer
while keys are names of either variables or groups of variables. IfIDENTITY
, do not transform the variables.By default it is set to {}.
parameters -- The parameters of the machine learning algorithm.
- Returns:
A machine learning model.
- Return type:
- create_regression_model(name, data, transformer=mappingproxy({'inputs': <gemseo.mlearning.transformers.scaler.min_max_scaler.MinMaxScaler object>, 'outputs': <gemseo.mlearning.transformers.scaler.min_max_scaler.MinMaxScaler object>}), **parameters)[source]#
Create a regression model from a training dataset.
- Parameters:
name (str) -- The name of the regression algorithm.
data (IODataset) -- The training dataset.
transformer (TransformerType) --
The strategies to transform the variables. Values are instances of
BaseTransformer
while keys are names of either variables or groups of variables. IfIDENTITY
, do not transform the variables.By default it is set to {'inputs': <gemseo.mlearning.transformers.scaler.min_max_scaler.MinMaxScaler object at 0x7f95bbc65d60>, 'outputs': <gemseo.mlearning.transformers.scaler.min_max_scaler.MinMaxScaler object at 0x7f95bbc66780>}.
parameters -- The parameters of the regression model.
- Returns:
A regression model.
- Return type:
- get_classification_options(model_name, output_json=False, pretty_print=True)[source]#
Find the available options for a classification model.
- Parameters:
- Returns:
The options schema of the classification model.
- Return type:
- get_clustering_options(model_name, output_json=False, pretty_print=True)[source]#
Find the available options for a clustering model.
- Parameters:
- Returns:
The options schema of the clustering model.
- Return type:
- get_mlearning_options(model_name, output_json=False, pretty_print=True)[source]#
Find the available options for a machine learning algorithm.
- Parameters:
- Returns:
The options schema of the machine learning algorithm.
- Return type:
- get_regression_options(model_name, output_json=False, pretty_print=True)[source]#
Find the available options for a regression model.
- Parameters:
- Returns:
The options schema of the regression model.
- Return type:
Subpackages#
- gemseo.mlearning.classification package
- gemseo.mlearning.clustering package
- gemseo.mlearning.core package
- gemseo.mlearning.data_formatters package
- gemseo.mlearning.regression package
- gemseo.mlearning.resampling package
- gemseo.mlearning.transformers package