gemseo.mlearning.regression.algos.gradient_boosting_settings module#
Settings of the gradient boosting for regression.
- Settings GradientBoostingRegressor_Settings(*, transformer=<factory>, parameters=<factory>, input_names=(), output_names=(), n_estimators=100)[source]#
Bases:
BaseRegressorSettings
The settings of the gradient boosting for regression.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
transformer (Mapping[str, Any]) --
By default it is set to <factory>.
parameters (Mapping[str, Any]) --
By default it is set to <factory>.
input_names (Sequence[str]) --
By default it is set to ().
output_names (Sequence[str]) --
By default it is set to ().
n_estimators (Annotated[int, Gt(gt=0)]) --
By default it is set to 100.
- Return type:
None
- n_estimators: PositiveInt = 100#
The number of boosting stages to perform.
- Constraints:
gt = 0