gemseo.mlearning.regression.algos.gradient_boosting_settings module#

Settings of the gradient boosting for regression.

Settings GradientBoostingRegressor_Settings(*, transformer=<factory>, parameters=<factory>, input_names=(), output_names=(), n_estimators=100)[source]#

Bases: BaseRegressorSettings

The settings of the gradient boosting for regression.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:
  • transformer (Mapping[str, Any]) --

    By default it is set to <factory>.

  • parameters (Mapping[str, Any]) --

    By default it is set to <factory>.

  • input_names (Sequence[str]) --

    By default it is set to ().

  • output_names (Sequence[str]) --

    By default it is set to ().

  • n_estimators (Annotated[int, Gt(gt=0)]) --

    By default it is set to 100.

Return type:

None

n_estimators: PositiveInt = 100#

The number of boosting stages to perform.

Constraints:
  • gt = 0