gemseo.mlearning.regression.algos.random_forest_settings module#
Settings of the multiLayer perceptron (MLP).
- Settings RandomForestRegressor_Settings(*, transformer=<factory>, parameters=<factory>, input_names=(), output_names=(), n_estimators=100, random_state=0)[source]#
Bases:
BaseRegressorSettings
The settings of the multiLayer perceptron (MLP).
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
transformer (Mapping[str, Any]) --
By default it is set to <factory>.
parameters (Mapping[str, Any]) --
By default it is set to <factory>.
input_names (Sequence[str]) --
By default it is set to ().
output_names (Sequence[str]) --
By default it is set to ().
n_estimators (Annotated[int, Gt(gt=0)]) --
By default it is set to 100.
random_state (Annotated[int, Ge(ge=0)] | None) --
By default it is set to 0.
- Return type:
None
- n_estimators: PositiveInt = 100#
The number of trees in the forest.
- Constraints:
gt = 0
- random_state: NonNegativeInt | None = 0#
The random state parameter.
If
None
, use the global random state instance fromnumpy.random
. Creating the model multiple times will produce different results. Ifint
, use a new random number generator seeded by this integer. This will produce the same results.
- model_post_init(context, /)#
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
- Parameters:
self (BaseModel) -- The BaseModel instance.
context (Any) -- The context.
- Return type:
None