gemseo.mlearning.regression.algos.svm_settings module#
Settings of the SVM regressor.
- Settings SVMRegressor_Settings(*, transformer=<factory>, parameters=<factory>, input_names=(), output_names=(), kernel='rbf')[source]#
Bases:
BaseRegressorSettings
The settings of the SVM regressor.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
transformer (Mapping[str, Any]) --
By default it is set to <factory>.
parameters (Mapping[str, Any]) --
By default it is set to <factory>.
input_names (Sequence[str]) --
By default it is set to ().
output_names (Sequence[str]) --
By default it is set to ().
kernel (str | Annotated[Callable, WithJsonSchema(json_schema={}, mode=None)]) --
By default it is set to "rbf".
- Return type:
None
- kernel: str | Annotated[Callable, WithJsonSchema({})] = 'rbf'#
The name of the kernel or a callable for the SVM.
Examples of names: "linear", "poly", "rbf", "sigmoid", "precomputed".