gemseo.problems.uncertainty.ishigami.statistics module#

Statistics associated with the Ishigami use case.

MEAN: Final[float] = 3.5#

The expectation of the output.

\[\mathbb{E}[Y] = \frac{a}{2}\]
SOBOL_1: Final[float] = 0.31390519114781146#

The first-order Sobol' index of \(X_1\).

\[S_1 = \frac{(1+b\frac{pi^4}{5})^2}{2\mathbb{V}[Y]}\]
SOBOL_12: Final[float] = 0.0#

The second-order Sobol' index of \(X_1\) and \(X_2\).

\[S_{1,2} = 0\]
SOBOL_123: Final[float] = 0.0#

The second-order Sobol' index of \(X_1\), \(X_2\) and \(X_3\).

\[S_{1,2,3} = 0\]
SOBOL_13: Final[float] = 0.24368366406214773#

The second-order Sobol' index of \(X_1\) and \(X_3\).

\[S_{1,3} = \frac{8b^2\pi^8}{225\mathbb{V}[Y]}\]
SOBOL_2: Final[float] = 0.4424111447900409#

The first-order Sobol' index of \(X_2\).

\[S_2 = \frac{a^2}{8\mathbb{V}[Y]}\]
SOBOL_23: Final[float] = 0.0#

The second-order Sobol' index of \(X_2\) and \(X_3\).

\[S_{2,3} = 0\]
SOBOL_3: Final[float] = 0.0#

The first-order Sobol' index of \(X_3\).

\[S_3 = 0\]
TOTAL_SOBOL_1: Final[float] = 0.5575888552099592#

The total Sobol' index of \(X_1\).

\[S_1^T = S_1 + S_{1,3}\]
TOTAL_SOBOL_2: Final[float] = 0.4424111447900409#

The total Sobol' index of \(X_2\).

\[S_2^T = S_2\]
TOTAL_SOBOL_3: Final[float] = 0.24368366406214773#

The total Sobol' index of \(X_3\).

\[S_3^T = S_{1,3}\]
VARIANCE: Final[float] = 13.844587940719254#

The variance of the output.

\[\mathbb{V}[Y] = \frac{1}{2} + \frac{a^2}{8} + \frac{b^2\pi^8}{18} + \frac{b\pi^4}{5}\]