Basic history

In this example, we illustrate the use of the BasicHistory plot on the Sobieski’s SSBJ problem.

from __future__ import division, unicode_literals

from matplotlib import pyplot as plt

Import

The first step is to import some functions from the API and a method to get the design space.

from gemseo.api import configure_logger, create_discipline, create_scenario
from gemseo.problems.sobieski.core import SobieskiProblem

configure_logger()

Out:

<RootLogger root (INFO)>

Description

The BasicHistory post-processing plots any of the constraint or objective functions w.r.t. the optimization iterations or sampling snapshots.

Create disciplines

At this point, we instantiate the disciplines of Sobieski’s SSBJ problem: Propulsion, Aerodynamics, Structure and Mission

disciplines = create_discipline(
    [
        "SobieskiPropulsion",
        "SobieskiAerodynamics",
        "SobieskiStructure",
        "SobieskiMission",
    ]
)

Create design space

We also read the design space from the SobieskiProblem.

design_space = SobieskiProblem().read_design_space()

Create and execute scenario

The next step is to build an MDO scenario in order to maximize the range, encoded ‘y_4’, with respect to the design parameters, while satisfying the inequality constraints ‘g_1’, ‘g_2’ and ‘g_3’. We can use the MDF formulation, the SLSQP optimization algorithm and a maximum number of iterations equal to 100.

scenario = create_scenario(
    disciplines,
    formulation="MDF",
    objective_name="y_4",
    maximize_objective=True,
    design_space=design_space,
)
scenario.set_differentiation_method("user")
for constraint in ["g_1", "g_2", "g_3"]:
    scenario.add_constraint(constraint, "ineq")
scenario.execute({"algo": "SLSQP", "max_iter": 10})

Out:

    INFO - 14:41:27:
    INFO - 14:41:27: *** Start MDO Scenario execution ***
    INFO - 14:41:27: MDOScenario
    INFO - 14:41:27:    Disciplines: SobieskiPropulsion SobieskiAerodynamics SobieskiStructure SobieskiMission
    INFO - 14:41:27:    MDOFormulation: MDF
    INFO - 14:41:27:    Algorithm: SLSQP
    INFO - 14:41:28: Optimization problem:
    INFO - 14:41:28:    Minimize: -y_4(x_shared, x_1, x_2, x_3)
    INFO - 14:41:28:    With respect to: x_shared, x_1, x_2, x_3
    INFO - 14:41:28:    Subject to constraints:
    INFO - 14:41:28:       g_1(x_shared, x_1, x_2, x_3) <= 0.0
    INFO - 14:41:28:       g_2(x_shared, x_1, x_2, x_3) <= 0.0
    INFO - 14:41:28:       g_3(x_shared, x_1, x_2, x_3) <= 0.0
    INFO - 14:41:28: Design space:
    INFO - 14:41:28: +----------+-------------+-------+-------------+-------+
    INFO - 14:41:28: | name     | lower_bound | value | upper_bound | type  |
    INFO - 14:41:28: +----------+-------------+-------+-------------+-------+
    INFO - 14:41:28: | x_shared |     0.01    |  0.05 |     0.09    | float |
    INFO - 14:41:28: | x_shared |    30000    | 45000 |    60000    | float |
    INFO - 14:41:28: | x_shared |     1.4     |  1.6  |     1.8     | float |
    INFO - 14:41:28: | x_shared |     2.5     |  5.5  |     8.5     | float |
    INFO - 14:41:28: | x_shared |      40     |   55  |      70     | float |
    INFO - 14:41:28: | x_shared |     500     |  1000 |     1500    | float |
    INFO - 14:41:28: | x_1      |     0.1     |  0.25 |     0.4     | float |
    INFO - 14:41:28: | x_1      |     0.75    |   1   |     1.25    | float |
    INFO - 14:41:28: | x_2      |     0.75    |   1   |     1.25    | float |
    INFO - 14:41:28: | x_3      |     0.1     |  0.5  |      1      | float |
    INFO - 14:41:28: +----------+-------------+-------+-------------+-------+
    INFO - 14:41:28: Optimization:   0%|          | 0/10 [00:00<?, ?it]
/home/docs/checkouts/readthedocs.org/user_builds/gemseo/conda/stable/lib/python3.8/site-packages/scipy/sparse/linalg/dsolve/linsolve.py:407: SparseEfficiencyWarning: splu requires CSC matrix format
  warn('splu requires CSC matrix format', SparseEfficiencyWarning)
    INFO - 14:41:28: Optimization:  20%|██        | 2/10 [00:00<00:00, 53.03 it/sec, obj=2.12e+3]
    INFO - 14:41:28: Optimization:  40%|████      | 4/10 [00:00<00:00, 21.40 it/sec, obj=3.97e+3]
    INFO - 14:41:28: Optimization:  50%|█████     | 5/10 [00:00<00:00, 16.67 it/sec, obj=3.96e+3]
    INFO - 14:41:28: Optimization:  60%|██████    | 6/10 [00:00<00:00, 13.67 it/sec, obj=3.96e+3]
    INFO - 14:41:28: Optimization:  70%|███████   | 7/10 [00:00<00:00, 11.57 it/sec, obj=3.96e+3]
    INFO - 14:41:29: Optimization:  90%|█████████ | 9/10 [00:01<00:00,  9.88 it/sec, obj=3.96e+3]
    INFO - 14:41:29: Optimization: 100%|██████████| 10/10 [00:01<00:00,  9.18 it/sec, obj=3.96e+3]
    INFO - 14:41:29: Optimization result:
    INFO - 14:41:29: Objective value = 3963.595455433326
    INFO - 14:41:29: The result is feasible.
    INFO - 14:41:29: Status: None
    INFO - 14:41:29: Optimizer message: Maximum number of iterations reached. GEMSEO Stopped the driver
    INFO - 14:41:29: Number of calls to the objective function by the optimizer: 12
    INFO - 14:41:29: Constraints values:
    INFO - 14:41:29:    g_1 = [-0.01814919 -0.03340982 -0.04429875 -0.05187486 -0.05736009 -0.13720854
    INFO - 14:41:29:  -0.10279146]
    INFO - 14:41:29:    g_2 = 3.236261671801799e-05
    INFO - 14:41:29:    g_3 = [-7.67067574e-01 -2.32932426e-01 -9.19662628e-05 -1.83255000e-01]
    INFO - 14:41:29: Design space:
    INFO - 14:41:29: +----------+-------------+--------------------+-------------+-------+
    INFO - 14:41:29: | name     | lower_bound |       value        | upper_bound | type  |
    INFO - 14:41:29: +----------+-------------+--------------------+-------------+-------+
    INFO - 14:41:29: | x_shared |     0.01    | 0.0600080906541795 |     0.09    | float |
    INFO - 14:41:29: | x_shared |    30000    |       60000        |    60000    | float |
    INFO - 14:41:29: | x_shared |     1.4     |        1.4         |     1.8     | float |
    INFO - 14:41:29: | x_shared |     2.5     |        2.5         |     8.5     | float |
    INFO - 14:41:29: | x_shared |      40     |         70         |      70     | float |
    INFO - 14:41:29: | x_shared |     500     |        1500        |     1500    | float |
    INFO - 14:41:29: | x_1      |     0.1     | 0.3999993439500847 |     0.4     | float |
    INFO - 14:41:29: | x_1      |     0.75    |        0.75        |     1.25    | float |
    INFO - 14:41:29: | x_2      |     0.75    |        0.75        |     1.25    | float |
    INFO - 14:41:29: | x_3      |     0.1     | 0.156230376400943  |      1      | float |
    INFO - 14:41:29: +----------+-------------+--------------------+-------------+-------+
    INFO - 14:41:29: *** MDO Scenario run terminated in 0:00:01.098527 ***

{'algo': 'SLSQP', 'max_iter': 10}

Post-process scenario

Lastly, we post-process the scenario by means of the BasicHistory plot which plots any of the constraint or objective functions w.r.t. optimization iterations or sampling snapshots.

Tip

Each post-processing method requires different inputs and offers a variety of customization options. Use the API function get_post_processing_options_schema() to print a table with the options for any post-processing algorithm. Or refer to our dedicated page: Options for Post-processing algorithms.

scenario.post_process(
    "BasicHistory", data_list=["g_1", "g_2", "g_3"], save=False, show=False
)
History plot

Out:

<gemseo.post.basic_history.BasicHistory object at 0x7f3b536f6a60>

Warning

In the Database, when the aim of the optimization problem is to maximize the objective function, the objective function name is preceded by a “-” and the stored values are the opposite of the objective function.

scenario.post_process("BasicHistory", data_list=["-y_4"], save=False, show=False)
# Workaround for HTML rendering, instead of ``show=True``
plt.show()
History plot

Total running time of the script: ( 0 minutes 1.528 seconds)

Gallery generated by Sphinx-Gallery