A from scratch example on the Sellar problem


In this example, we will create a MDO scenario based on the Sellar’s problem from scratch. Contrary to the |g| in ten minutes tutorial, all the disciplines will be implemented from scratch by sub-classing the MDODiscipline class for each discipline of the Sellar problem.

The Sellar problem

We will consider in this example the Sellar’s problem:

\[\begin{split}\begin{aligned} \text{minimize the objective function }&obj=x_{local}^2 + x_{shared,1} +y_0+e^{-y_1} \\ \text{with respect to the design variables }&x_{shared},\,x_{local} \\ \text{subject to the general constraints } & c_1 \leq 0\\ & c_2 \leq 0\\ \text{subject to the bound constraints } & -10 \leq x_{shared,0} \leq 10\\ & 0 \leq x_{shared,1} \leq 10\\ & 0 \leq x_{local} \leq 10. \end{aligned}\end{split}\]

where the coupling variables are

\[\text{Discipline 0: } y_0 = x_{shared,0}^2 + x_{shared,1} + x_{local} - 0.2\,y_1,\]


\[\text{Discipline 1: }y_1 = \sqrt{y_0} + x_{shared,0} + x_{shared,1}.\]

and where the general constraints are

\[ \begin{align}\begin{aligned}c_0 = 1-y_0/{3.16}\\c_1 = y_1/{24.} - 1\end{aligned}\end{align} \]


All the imports needed for the tutorials are performed here. Note that some of the imports are related to the Python 2/3 compatibility.

from __future__ import absolute_import, division, print_function, unicode_literals

from builtins import super
from math import exp, sqrt

from future import standard_library
from numpy import array, ones

from gemseo.algos.design_space import DesignSpace
from gemseo.api import configure_logger, create_scenario
from gemseo.core.discipline import MDODiscipline



Create the disciplinary classes

In this section, we define the Sellar disciplines by sub-classing the MDODiscipline class. For each class, the constructor and the _run method are overriden:

  • In the constructor, the input and output grammar are created. They define which inputs and outputs variables are allowed at the discipline execution. The default inputs are also defined, in case of the user does not provide them at the discipline execution.

  • In the _run method is implemented the concrete computation of the discipline. The inputs data are fetch by using the MDODiscipline.get_inputs_by_name() method. The returned Numpy arrays can then be used to compute the output values. They can then be stored in the MDODiscipline.local_data dictionary. If the discipline execution is successful.

Note that we do not define the Jacobians in the disciplines. In this example, we will approximate the derivatives using the finite differences method.

Create the SellarSystem class

class SellarSystem(MDODiscipline):
    def __init__(self):
        super(SellarSystem, self).__init__()
        # Initialize the grammars to define inputs and outputs
        self.input_grammar.initialize_from_data_names(["x", "z", "y_0", "y_1"])
        self.output_grammar.initialize_from_data_names(["obj", "c_1", "c_2"])
        # Default inputs define what data to use when the inputs are not
        # provided to the execute method
        self.default_inputs = {
            "x": ones(1),
            "z": array([4.0, 3.0]),
            "y_0": ones(1),
            "y_1": ones(1),

    def _run(self):
        # The run method defines what happens at execution
        # ie how outputs are computed from inputs
        x, z, y_0, y_1 = self.get_inputs_by_name(["x", "z", "y_0", "y_1"])
        # The ouputs are stored here
        self.local_data["obj"] = array([x[0] ** 2 + z[1] + y_0[0] ** 2 + exp(-y_1[0])])
        self.local_data["c_1"] = array([1.0 - y_0[0] / 3.16])
        self.local_data["c_2"] = array([y_1[0] / 24.0 - 1.0])

Create the Sellar1 class

class Sellar1(MDODiscipline):
    def __init__(self):
        super(Sellar1, self).__init__()
        self.input_grammar.initialize_from_data_names(["x", "z", "y_1"])
        self.default_inputs = {
            "x": ones(1),
            "z": array([4.0, 3.0]),
            "y_0": ones(1),
            "y_1": ones(1),

    def _run(self):
        x, z, y_1 = self.get_inputs_by_name(["x", "z", "y_1"])
        self.local_data["y_0"] = array([z[0] ** 2 + z[1] + x[0] - 0.2 * y_1[0]])

Create the Sellar2 class

class Sellar2(MDODiscipline):
    def __init__(self):
        super(Sellar2, self).__init__()
        self.input_grammar.initialize_from_data_names(["z", "y_0"])
        self.default_inputs = {
            "x": ones(1),
            "z": array([4.0, 3.0]),
            "y_0": ones(1),
            "y_1": ones(1),

    def _run(self):
        z, y_0 = self.get_inputs_by_name(["z", "y_0"])
        self.local_data["y_1"] = array([sqrt(y_0) + z[0] + z[1]])

Create and execute the scenario

Instantiate disciplines

We can now instantiate the disciplines and store the instances in a list which will be used below.

disciplines = [Sellar1(), Sellar2(), SellarSystem()]

Create the design space

In this section, we define the design space which will be used for the creation of the MDOScenario. Note that the coupling variables are defined in the design space. Indeed, as we are going to select the IDF formulation to solve the MDO scenario, the coupling variables will be unknowns of the optimization problem and consequently they have to be included in the design space. Conversely, it would not have been necessary to include them if we aimed to select a MDF formulation.

design_space = DesignSpace()
design_space.add_variable("x", 1, l_b=0.0, u_b=10.0, value=ones(1))
    "z", 2, l_b=(-10, 0.0), u_b=(10.0, 10.0), value=array([4.0, 3.0])
design_space.add_variable("y_0", 1, l_b=-100.0, u_b=100.0, value=ones(1))
design_space.add_variable("y_1", 1, l_b=-100.0, u_b=100.0, value=ones(1))

Create the scenario

In this section, we build the MDO scenario which links the disciplines with the formulation, the design space and the objective function.

scenario = create_scenario(
    disciplines, formulation="IDF", objective_name="obj", design_space=design_space

Add the constraints

Then, we have to set the design constraints

scenario.add_constraint("c_1", "ineq")
scenario.add_constraint("c_2", "ineq")

As previously mentioned, we are going to use finite differences to approximate the derivatives since the disciplines do not provide them.

scenario.set_differentiation_method("finite_differences", 1e-6)

Execute the scenario

Then, we execute the MDO scenario with the inputs of the MDO scenario as a dictionary. In this example, the gradient-based SLSQP optimizer is selected, with 10 iterations at maximum:

scenario.execute(input_data={"max_iter": 10, "algo": "SLSQP"})


{'max_iter': 10, 'algo': 'SLSQP'}

Post-process the scenario

Finally, we can generate plots of the optimization history:

scenario.post_process("OptHistoryView", save=False, show=True)
  • Evolution of the optimization variables
  • Evolution of the objective value
  • Distance to the optimum
  • Hessian diagonal approximation
  • Evolution of the inequality constraints
  • Evolution of the equality constraints


/home/docs/checkouts/readthedocs.org/user_builds/gemseo/conda/3.0.3/lib/python3.8/site-packages/gemseo/post/opt_history_view.py:312: UserWarning: FixedFormatter should only be used together with FixedLocator
/home/docs/checkouts/readthedocs.org/user_builds/gemseo/conda/3.0.3/lib/python3.8/site-packages/gemseo/post/opt_history_view.py:716: MatplotlibDeprecationWarning: default base will change from np.e to 10 in 3.4.  To suppress this warning specify the base keyword argument.
  norm=SymLogNorm(linthresh=linthresh, vmin=-vmax, vmax=vmax),
/home/docs/checkouts/readthedocs.org/user_builds/gemseo/conda/3.0.3/lib/python3.8/site-packages/gemseo/post/opt_history_view.py:626: MatplotlibDeprecationWarning: default base will change from np.e to 10 in 3.4.  To suppress this warning specify the base keyword argument.
  norm=SymLogNorm(linthresh=1.0, vmin=-vmax, vmax=vmax),
/home/docs/checkouts/readthedocs.org/user_builds/gemseo/conda/3.0.3/lib/python3.8/site-packages/gemseo/post/opt_history_view.py:619: MatplotlibDeprecationWarning: Passing parameters norm and vmin/vmax simultaneously is deprecated since 3.3 and will become an error two minor releases later. Please pass vmin/vmax directly to the norm when creating it.
  im1 = ax1.imshow(

<gemseo.post.opt_history_view.OptHistoryView object at 0x7fc29dafae20>

Total running time of the script: ( 0 minutes 1.042 seconds)

Gallery generated by Sphinx-Gallery