cache module¶
Caching module to avoid multiple evaluations of a discipline¶
Classes:
|
Abstract class for caches: Defines the common methods for caching inputs, outputs, and jacobians of a MDODiscipline. |
|
Abstract cache to store all data, either in memory or on the disk. |
Functions:
|
Checks if the data_dict is approximately equal to the cache dict at self.tolerance (absolute + relative) |
|
Check if the data dictionary is equal to the cache data dictionary. |
|
Hash data using xxh3_64 from the xxhash library. |
|
Convert complex to real numpy array. |
- class gemseo.core.cache.AbstractCache(tolerance=0.0, name=None)[source]¶
Bases:
object
Abstract class for caches: Defines the common methods for caching inputs, outputs, and jacobians of a MDODiscipline.
See also
SimpleCache
store the last evaluation
MemoryFullCache
store all data in memory
HDF5Cache
store all data in an HDF5 file
Initialize cache tolerance. By default, don’t use approximate cache. It is up to the user to choose to optimize CPU time with this or not.
could be something like 2 * finfo(float).eps
- Parameters
tolerance (float) –
Tolerance that defines if two input vectors are equal and cached data shall be returned. If 0, no approximation is made. Default: 0.
By default it is set to 0.0.
name (str) –
Name of the cache.
By default it is set to None.
Attributes:
Return the inputs names.
Get the maximal length of the cache (the maximal number of stored elements).
Return the outputs names.
List of samples indices.
Return the variables sizes.
Methods:
cache_jacobian
(input_data, input_names, jacobian)Cache jacobian data to avoid re evaluation.
cache_outputs
(input_data, input_names, ...)Cache data to avoid re evaluation.
clear
()Clear the cache.
get_all_data
(**options)Read all the data in the cache.
get_data
(index, **options)Returns an elementary sample.
Retrieve the last execution inputs.
Retrieve the last execution outputs.
Get the length of the cache, ie the number of stored elements.
get_outputs
(input_data[, input_names])Check if the discipline has already been evaluated for the given input data dictionary.
- INPUTS_GROUP = 'inputs'¶
- JACOBIAN_GROUP = 'jacobian'¶
- OUTPUTS_GROUP = 'outputs'¶
- SAMPLE_GROUP = 'sample'¶
- cache_jacobian(input_data, input_names, jacobian)[source]¶
Cache jacobian data to avoid re evaluation.
- Parameters
input_data (dict) – Input data to cache.
input_names (list(str)) – List of input data names.
jacobian (dict) – Jacobian to cache.
- cache_outputs(input_data, input_names, output_data, output_names=None)[source]¶
Cache data to avoid re evaluation.
- Parameters
input_data (dict) – Input data to cache.
input_names (list(str)) – List of input data names.
output_data (dict) – Output data to cache.
output_names (list(str)) –
List of output data names. If None, use all output names. Default: None.
By default it is set to None.
- get_all_data(**options)[source]¶
Read all the data in the cache.
- Returns
all_data – A dictionary of dictionaries for inputs, outputs and jacobian where keys are data indices.
- Return type
dict
- get_data(index, **options)[source]¶
Returns an elementary sample.
- Parameters
index (int) – sample index.
options – getter options
- get_last_cached_inputs()[source]¶
Retrieve the last execution inputs.
- Returns
inputs – Last cached inputs.
- Return type
dict
- get_last_cached_outputs()[source]¶
Retrieve the last execution outputs.
- Returns
outputs – Last cached outputs.
- Return type
dict
- get_length()[source]¶
Get the length of the cache, ie the number of stored elements.
- Returns
length – Length of the cache.
- Return type
int
- get_outputs(input_data, input_names=None)[source]¶
Check if the discipline has already been evaluated for the given input data dictionary. If True, return the associated cache, otherwise return None.
- Parameters
input_data (dict) – Input data dictionary to test for caching.
input_names (list(str)) –
List of input data names. If None, takes them all
By default it is set to None.
- Returns
output_data (dict) – Output data if there is no need to evaluate the discipline. None otherwise.
jacobian (dict) – Jacobian if there is no need to evaluate the discipline. None otherwise.
- property inputs_names¶
Return the inputs names.
- property max_length¶
Get the maximal length of the cache (the maximal number of stored elements).
- Returns
length – Maximal length of the cache.
- Return type
int
- property outputs_names¶
Return the outputs names.
- property samples_indices¶
List of samples indices.
- property varsizes¶
Return the variables sizes.
- class gemseo.core.cache.AbstractFullCache(tolerance=0.0, name=None)[source]¶
Bases:
gemseo.core.cache.AbstractCache
Abstract cache to store all data, either in memory or on the disk.
See also
MemoryFullCache
store all data in memory
HDF5Cache
store all data in an HDF5 file
Initialize cache tolerance. By default, don’t use approximate cache. It is up to the user to choose to optimize CPU time with this or not.
could be something like 2 * finfo(float).eps
- Parameters
tolerance (float) –
Tolerance that defines if two input vectors are equal and cached data shall be returned. If 0, no approximation is made. Default: 0.
By default it is set to 0.0.
name (str) –
Name of the cache.
By default it is set to None.
Attributes:
Return the inputs names.
Get the maximal length of the cache (the maximal number of stored elements).
Return the outputs names.
List of samples indices.
Return the variables sizes.
Methods:
cache_jacobian
(input_data, input_names, jacobian)Cache jacobian data to avoid re evaluation.
cache_outputs
(input_data, input_names, ...)Cache data to avoid re evaluation.
clear
()Clears the cache.
export_to_dataset
([name, by_group, ...])Set Dataset from a cache.
export_to_ggobi
(file_path[, inputs_names, ...])Export history to xml file format for ggobi tool.
get_all_data
([as_iterator])Return all the data in the cache.
get_data
(index, **options)Gets the data associated to a sample ID.
Retrieve the last execution inputs.
Retrieve the last execution outputs.
Get the length of the cache, ie the number of stored elements.
get_outputs
(input_data[, input_names])Check if the discipline has already been evaluated for the given input data dictionary.
merge
(other_cache)Merges an other cache with self.
- INPUTS_GROUP = 'inputs'¶
- JACOBIAN_GROUP = 'jacobian'¶
- OUTPUTS_GROUP = 'outputs'¶
- SAMPLE_GROUP = 'sample'¶
- cache_jacobian(input_data, input_names, jacobian)[source]¶
Cache jacobian data to avoid re evaluation.
- Parameters
input_data (dict) – Input data to cache.
input_names (list(str)) – List of input data names.
jacobian (dict) – Jacobian to cache.
- cache_outputs(input_data, input_names, output_data, output_names=None)[source]¶
Cache data to avoid re evaluation.
- Parameters
input_data (dict) – Input data to cache.
input_names (list(str)) – List of input data names.
output_data (dict) – Output data to cache.
output_names (list(str)) –
List of output data names. If None, use all output names. Default: None.
By default it is set to None.
- export_to_dataset(name=None, by_group=True, categorize=True, inputs_names=None, outputs_names=None)[source]¶
Set Dataset from a cache.
- Parameters
name (str) –
dataset name.
By default it is set to None.
by_group (bool) –
if True, store the data by group. Otherwise, store them by variables. Default: True
By default it is set to True.
categorize (bool) –
distinguish between the different groups of variables. Default: True.
By default it is set to True.
inputs_names (list(str)) –
list of inputs names. If None, use all inputs. Default: None.
By default it is set to None.
outputs_names (list(str)) –
list of outputs names. If None, use all outputs. Default: None.
By default it is set to None.
- export_to_ggobi(file_path, inputs_names=None, outputs_names=None)[source]¶
Export history to xml file format for ggobi tool.
- Parameters
file_path (str) – Path to export the file.
inputs_names (list(str)) –
List of inputs to include in the export. By default, take all of them.
By default it is set to None.
outputs_names (list(str)) –
Names of outputs to export. By default, take all of them.
By default it is set to None.
- get_all_data(as_iterator=False)[source]¶
Return all the data in the cache.
- Parameters
as_iterator (bool) –
If True, return an iterator. Otherwise a dictionary. Default: False.
By default it is set to False.
- Returns
all_data – A dictionary of dictionaries for inputs, outputs and jacobian where keys are data indices.
- Return type
dict
- get_data(index, **options)[source]¶
Gets the data associated to a sample ID.
- Parameters
index (str) – sample ID.
options – options passed to the _read_data() method.
- Returns
input data, output data and jacobian.
- Return type
dict
- get_last_cached_inputs()[source]¶
Retrieve the last execution inputs.
- Returns
inputs – Last cached inputs.
- Return type
dict
- get_last_cached_outputs()[source]¶
Retrieve the last execution outputs.
- Returns
outputs – Last cached outputs.
- Return type
dict
- get_length()[source]¶
Get the length of the cache, ie the number of stored elements.
- Returns
length – Length of the cache.
- Return type
int
- get_outputs(input_data, input_names=None)[source]¶
Check if the discipline has already been evaluated for the given input data dictionary. If True, return the associated cache, otherwise return None.
- Parameters
input_data (dict) – Input data dictionary to test for caching.
input_names (list(str)) –
List of input data names.
By default it is set to None.
- Returns
output_data (dict) – Output data if there is no need to evaluate the discipline. None otherwise.
jacobian (dict) – Jacobian if there is no need to evaluate the discipline. None otherwise.
- property inputs_names¶
Return the inputs names.
- property max_length¶
Get the maximal length of the cache (the maximal number of stored elements).
- Returns
length – Maximal length of the cache.
- Return type
int
- merge(other_cache)[source]¶
Merges an other cache with self.
- Parameters
other_cache (AbstractFullCache) – Cache to merge with the current one.
- property outputs_names¶
Return the outputs names.
- property samples_indices¶
List of samples indices.
- property varsizes¶
Return the variables sizes.
- gemseo.core.cache.check_cache_approx(data_dict, cache_dict, cache_tol=0.0)[source]¶
Checks if the data_dict is approximately equal to the cache dict at self.tolerance (absolute + relative)
- Parameters
data_dict – data dict to check
- Returns
True if the dict are approximately equal
- gemseo.core.cache.check_cache_equal(data_dict, cache_dict)[source]¶
Check if the data dictionary is equal to the cache data dictionary.
- Parameters
data_dict (dict) – Data dictionary to check.
cache_dict (dict) – Cache data dictionary to check.
- Returns
is_equal – True if the dictionaries are equal.
- Return type
bool
Examples
>>> from numpy import array >>> data_1 = {'x': array([1.]), 'y': array([2.])} >>> data_2 = {'x': array([1.]), 'y': array([3.])} >>> check_cache_equal(data_1, data_1) True >>> check_cache_equal(data_1, data_2) False
- gemseo.core.cache.hash_data_dict(data, names_tokeep=None)[source]¶
Hash data using xxh3_64 from the xxhash library.
- Parameters
data (Mapping[str, Optional[ndarray, int, float]]) – The data to hash.
names_tokeep (Optional[Sequence[str]]) –
The names of the data to keep for hashing. If None, use all the names sorted lexicographically.
By default it is set to None.
- Returns
The hash value of the data.
- Return type
int
Examples
>>> from gemseo.core.cache import hash_data_dict >>> from numpy import array >>> data = {'x':array([1.,2.]),'y':array([3.])} >>> hash_data_dict(data) 13252388834746642440 >>> hash_data_dict(data,'x') 4006190450215859422