gemseo / utils / derivatives

# finite_differences module¶

Classes:

 FirstOrderFD(f_pointer[, step, parallel, ...]) First-order finite differences approximator.

Functions:

 approx_hess(f_p, f_x, f_m, step) Compute the second-order approximation of the Hessian matrix $$d^2f/dx^2$$. comp_best_step(f_p, f_x, f_m, step[, ...]) Compute the optimal step for finite differentiation. compute_cancellation_error(f_x, step[, ...]) Estimate the cancellation error. compute_truncature_error(hess, step) Estimate the truncation error.
class gemseo.utils.derivatives.finite_differences.FirstOrderFD(f_pointer, step=1e-06, parallel=False, design_space=None, normalize=True, **parallel_args)[source]

First-order finite differences approximator.



rac{df(x)}{dx}pprox rac{f(x+delta x)-f(x)}{delta x}

f_pointer

The pointer to the function to derive.

Type

Callable

Initialize self. See help(type(self)) for accurate signature.

Parameters
• f_pointer (Callable[[ndarray],ndarray]) – The pointer to the function to derive.

• step (Union[float,ndarray]) –

The default differentiation step.

By default it is set to 1e-06.

• parallel (bool) –

Whether to differentiate the function in parallel.

By default it is set to False.

• design_space (Optional[DesignSpace]) –

The design space containing the upper bounds of the input variables. If None, consider that the input variables are unbounded.

By default it is set to None.

• normalize (bool) –

If True, then the functions are normalized.

By default it is set to True.

• **parallel_args (Union[int,bool,float]) – The parallel execution options, see gemseo.core.parallel_execution.

Return type

None

Attributes:

 ALIAS step The default approximation step.

Methods:

 compute_optimal_step(x_vect[, numerical_error]) Compute the gradient by real step. f_gradient(x_vect[, step, x_indices]) Approximate the gradient of the function for a given input vector. generate_perturbations(n_dim, x_vect[, ...]) Generate the input perturbations from the differentiation step.
ALIAS = 'finite_differences'
compute_optimal_step(x_vect, numerical_error=2.220446049250313e-16, **kwargs)[source]

Compute the gradient by real step.

Parameters
• x_vect (numpy.ndarray) – The input vector.

• numerical_error (float) –

The numerical error associated to the calculation of $$f$$. By default machine epsilon (appx 1e-16), but can be higher. when the calculation of $$f$$ requires a numerical resolution.

By default it is set to 2.220446049250313e-16.

• **kwargs – The additional arguments passed to the function.

Returns

• The optimal steps.

• The errors.

Return type

Tuple[numpy.ndarray, numpy.ndarray]

Approximate the gradient of the function for a given input vector.

Parameters
• x_vect (ndarray) – The input vector.

• step (Optional[float,ndarray]) –

The differentiation step. If None, use the default differentiation step.

By default it is set to None.

• x_indices (Optional[Sequence[int]]) –

The components of the input vector to be used for the differentiation. If None, use all the components.

By default it is set to None.

• **kwargs (Any) – The optional arguments for the function.

Returns

Return type

ndarray

generate_perturbations(n_dim, x_vect, x_indices=None, step=None)

Generate the input perturbations from the differentiation step.

These perturbations will be used to compute the output ones.

Parameters
• n_dim (int) – The input dimension.

• x_vect (numpy.ndarray) – The input vector.

• x_indices (Optional[Sequence[int]]) –

The components of the input vector to be used for the differentiation. If None, use all the components.

By default it is set to None.

• step (Optional[float]) –

The differentiation step. If None, use the default differentiation step.

By default it is set to None.

Returns

• The input perturbations.

• The differentiation step, either one global step or one step by input component.

Return type

Tuple[numpy.ndarray, Union[float, numpy.ndarray]]

property step

The default approximation step.

gemseo.utils.derivatives.finite_differences.approx_hess(f_p, f_x, f_m, step)[source]

Compute the second-order approximation of the Hessian matrix $$d^2f/dx^2$$.

Parameters
• f_p (numpy.ndarray) – The value of the function $$f$$ at the next step $$x+\\delta_x$$.

• f_x (numpy.ndarray) – The value of the function $$f$$ at the current step $$x$$.

• f_m (numpy.ndarray) – The value of the function $$f$$ at the previous step $$x-\\delta_x$$.

• step (float) – The differentiation step $$\\delta_x$$.

Returns

The approximation of the Hessian matrix at the current step $$x$$.

Return type

numpy.ndarray

gemseo.utils.derivatives.finite_differences.comp_best_step(f_p, f_x, f_m, step, epsilon_mach=2.220446049250313e-16)[source]

Compute the optimal step for finite differentiation.

Applied to a forward first order finite differences gradient approximation.

Require a first evaluation of the perturbed functions values.

The optimal step is reached when the truncation error (cut in the Taylor development), and the numerical cancellation errors (round-off when doing $$f(x+step)-f(x))$$ are equal.

See: - https://en.wikipedia.org/wiki/Numerical_differentiation - Numerical Algorithms and Digital Representation,

Knut Morken, Chapter 11, “Numerical Differenciation”

Parameters
• f_p (numpy.ndarray) – The value of the function $$f$$ at the next step $$x+\\delta_x$$.

• f_x (numpy.ndarray) – The value of the function $$f$$ at the current step $$x$$.

• f_m (numpy.ndarray) – The value of the function $$f$$ at the previous step $$x-\\delta_x$$.

• step (float) – The differentiation step $$\\delta_x$$.

• epsilon_mach (float) –

By default it is set to 2.220446049250313e-16.

Returns

• The estimation of the truncation error. None if the Hessian approximation is too small to compute the optimal step.

• The estimation of the cancellation error. None if the Hessian approximation is too small to compute the optimal step.

• The optimal step.

Return type

Tuple[Optional[numpy.ndarray], Optional[numpy.ndarray], float]

gemseo.utils.derivatives.finite_differences.compute_cancellation_error(f_x, step, epsilon_mach=2.220446049250313e-16)[source]

Estimate the cancellation error.

This is the round-off when doing $$f(x+\\delta_x)-f(x)$$.

Parameters
• f_x (numpy.ndarray) – The value of the function at the current step $$x$$.

• step (float) – The step used for the calculations of the perturbed functions values.

• epsilon_mach

The machine epsilon.

By default it is set to 2.220446049250313e-16.

Returns

The cancellation error.

Return type

numpy.ndarray

gemseo.utils.derivatives.finite_differences.compute_truncature_error(hess, step)[source]

Estimate the truncation error.

Defined for a first order finite differences scheme.

Parameters
• hess (numpy.ndarray) – The second-order derivative $$d^2f/dx^2$$.

• step (float) – The differentiation step.

Returns

The truncation error.

Return type

numpy.ndarray